TRANSFORM CALCULUS, FOURIER SERIES AND NUMERICAL TECHNIQUES

Course Code	21MAT 31	CIE Marks	50
Teaching Hours/Week (L:T:P:S)	2:2:0:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	03

Course objectives: The goal of the course Transform Calculus, Fourier series and Numerical techniques 21MAT 31 is

- To have an insight into solving ordinary differential equations by using Laplace transform techniques
- Learn to use the Fourier series to represent periodical physical phenomena in engineering analysis.
- To enable the students to study Fourier Transforms and concepts of infinite Fourier Sine and Cosine transforms and to learn the method of solving difference equations by the z-transform method.
- To develop proficiency in solving ordinary and partial differential equations arising in engineering applications, using numerical methods

Teaching-Learning Process (General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Support and guide the students for self-study.
- 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress.
- 5. Encourage the students for group learning to improve their creative and analytical skills.
- 6. Show short related video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).
 - As a model solution for some exercises (post-lecture activity).

Module-1: Laplace Transform (8 Hours)				
Definition and Laplace transforms of	of elementary functions (statements only). Problems on La	place's Transform of		
$e^{at}f(t),\;t^nf(t)$, $rac{f(t)}{t}$. Laplace tran	sforms of Periodic functions (statement only) and unit-step fu	unction – problems.		
Inverse Laplace transforms definition	and problems, Convolution theorem to find the inverse Laplac	e transforms (without		
Proof) problems. Laplace	transforms of derivatives, solution of diffe	rential equations.		
(8 Hours)				
Self-study: Solution of simultaneous	first-order differential equations.			
(RBT Levels: L1, L2 and L3)				
Teaching-Learning Process	Chalk and talk method / PowerPoint Presentation			
Module-2: Fourier Series (8 Hours)				
Introduction to infinite series, convergence and divergence. Periodic functions, Dirichlet's condition. Fourier series of				
periodic functions with period 2 π and arbitrary period. Half range Fourier series. Practical harmonic analysis.				
Self-study: Convergence of series by D'Alembert's Ratio test and, Cauchy's root test.				
(RBT Levels: L1, L2 and L3)				
Teaching-Learning Process	Chalk and talk method / PowerPoint Presentation			
Module-3: Infinite Fourier Transforms and Z-Transforms (8 Hours)				

Infinite Fourier transforms definition, Fourier sine and cosine transforms. Inverse Fourier transforms, Inverse Fourier cosine				
and sine transforms. Problems.				
Difference equations, z-transform-definition, Standard z-transforms, Damping and shifting rules, Problems. Inverse z-				
transform and applications to solve difference equations				
Self Study: Initial value and final value theorems, problems.				
(RBT Levels: L1, L2 and L3)				
Teaching-Learning Process Chalk and talk method / PowerPoint Presentation				
Module-4: Numerical Solution of Partial Differential Equations (8 Hours)				
Classifications of second-order partial differential equations, finite difference approximations to derivatives, Solution of				
Laplace's equation using standard five-point formula. Solution of heat equation by Schmidt explicit formula and Crank-				
Nicholson method, Solution of the Wave equation. Problems.				
Self Study: Solution of Poisson equations using standard five-point formula.				
(RBT Levels: L1, L2 and L3)				
Teaching-Learning Process Chalk and talk method / PowerPoint Presentation				
Module-5: Numerical Solution of Second-Order ODEs and Calculus of Variations (8 Hours)				
Second-order differential equations - Runge-Kutta method and Milne's predictor and corrector method. (No derivations				
of formulae).				
Calculus of Variations: Functionals, Euler's equation, Problems on extremals of functional. Geodesics on a plane,				
Variational problems				
Self Study: Hanging chain problem				
(RBT Levels: L1, L2 and L3)				
Course outcomes: At the end of the course the student will be able to :				
1. To solve ordinary differential equations using Laplace transform.				
2. Demonstrate the Fourier series to study the behaviour of periodic functions and their applications in system communications, digital signal processing and field theory.				
3. To use Fourier transforms to analyze problems involving continuous-time signals and to apply Z-Transform				
techniques to solve difference equations				
4. To solve mathematical models represented by initial or boundary value problems involving partial differential				
equations				
5. Determine the extremals of functionals using calculus of variations and solve problems arising in dynamics of				
rigid bodies and vibrational analysis.				

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation:

Three Unit Tests each of 20 Marks (duration 01 hour)

- 1. First test at the end of 5^{th} week of the semester
- 2. Second test at the end of the 10^{th} week of the semester
- 3. Third test at the end of the 15^{th} week of the semester

Two assignments each of **10 Marks**

- 4. First assignment at the end of 4th week of the semester
- 5. Second assignment at the end of 9th week of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for **20 Marks** (duration 01 hours)

6. At the end of the 13th week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be **scaled** down to 50 marks

(to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours)**

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 subquestions), **should have a mix of topics** under that module.

The students have to answer 5 full questions, selecting one full question from each module

Suggested Learning Resources:

Text Books:

- 1. B.S. Grewal: "Higher Engineering Mathematics", Khanna publishers, 44th Ed.2018
- 2. **E. Kreyszig**: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed. (Reprint), 2016.

Reference Books

- 1. V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed.
- 2. Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rd Reprint, 2016.
- 3. N.P Bali and Manish Goyal: "A textbook of Engineering Mathematics" Laxmi Publications, Latest edition.
- 4. C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics" McGraw Hill Book Co.Newyork, Latest ed.
- 5. Gupta C.B, Sing S.R and Mukesh Kumar: "Engineering Mathematic for Semester I and II", Mc- Graw Hill Education(India) Pvt. Ltd 2015.
- 6. H.K.Dass and Er. Rajnish Verma: "Higher Engineering Mathematics" S.Chand Publication (2014).
- 7. James Stewart: "Calculus" Cengage publications, 7th edition, 4th Reprint 2019.

Web links and Video Lectures (e-Resources):

- <u>http://.ac.in/courses.php?disciplineID=111</u>
- <u>http://www.class-central.com/subject/math(MOOCs)</u>
- <u>http://academicearth.org/</u>
- <u>http://www.bookstreet.in</u>.
- VTU e-Shikshana Program
- VTU EDUSAT Program

Activity-Based Learning (Suggested Activities in Class)/ Practical Based learning

- Quizzes
- Assignments
 Seminars

	FUNDAMENTALS OF	AGRICULTURE & CROP PRODUCTION TE	CHNOLOGY (IPCC)		
Course Code		21AG32	CIE Marks	50	
Teaching Hours/	Week (L:T:P: S)	3:0:2:0	SEE Marks	50	
Total Hours of Pedagogy40 hours Theory + 8 Lab slotsTotal Marks100				100	
Credits		04	Exam Hours	03	
* Additional one	hour may be considered	for Instructions if required			
Course objective	s:				
 Impartir 	ng knowledge on differen	t crops, crop nutrition and growth			
 Describi 	ng crop-water relations in	n association to crop growth and develop	oment		
 Illustrati 	ng crop management, cro	opping pattern and weed management			
 Impartir 	ig the fundamentals of cr	op production technology of crops			
Providin	g knowledge on the impo	ortance and practices followed in growin	g crops		
	<u> </u>		<u> </u>		
Teaching-Learnir	g Process (General Instru	uctions)			
These are sample	Strategies; which teache	ers can use to accelerate the attainment	of the various cours	se outcomes.	
1. Adopt d	ifferent types of teaching	methods to develop the outcomes throu	gh PowerPoint pres	entations and Video	
demons	trations or Simulations.				
2. Chalk ar	d Talk method for Proble	m Solving.			
3. Arrange	visits to show the live wo	orking models other than laboratory topi	CS.		
4. Adopt co	ollaborative (Group Learr	ing) Learning in the class.			
5. Adopt P	roblem Based Learning (F	PBL), which fosters students Analytical sk	kills and develops the	ninking skills such as	
evaluati	ng, generalizing, and ana	ysing information.			
6. Conduct	Laboratory Demonstrati	ons and Practical Experiments to enhance	e experiential skills		
MODULE-1				8	
HOURS					
Agronomy, its d	efinition, scope and role	of Agronomist. Tillage-objectives of tillag	ge, types of tillage,	tillage implements	
and factors affe	cting tillage, Effect of tilla	ge on soil and crop growth. Tilth: its de	finition, characteris	tics and ideal tilth,	
Modern concep	ts of tillage, minimum, z	ero and stubble mulch tillage, importar	nce of puddling. Co	onventional tillage	
practices and t	heir effects, modern till	age practices and their advantages; o	ptimum tillage wit	h different tillage	
implements and	their effect on soil prope	erties.			
Teaching-	1. PowerPoint Presentation	on			
Learning	2. Chalk and Talk are used	for Problem Solving (In-general)			
Process	 Video demonstration o 	r Simulations			
· · ·	4. Laboratory Demonstra	tions and Practical Experiments			
MODULE- 2				8 HOURS	
Seed, its definiti	on, characteristics of qua	ality seed, seed treatment and its object	tives. Seed dorman	cy, causes of seed	
dormancy and m	nultiplication, stages of se	ed. Methods of sowing seed and sowing i	mplements. Effect of	of plant population	
on growth and yield, Planting geometry viz., solid, paired and skipped row planting.					
Importance of m	Importance of manures and fertilizers and its classification. Methods and time of application of manures, fertilizers and				
green manuring. Nutrient use efficiency and factors affecting nutrient use efficiency.					
Scheduling of Irrigation and Fertilizers: Irrigation schedules for different crops in different soils and agro-climatic regions,					
tertigations, irrigation methods. Plant Protection Measures- Pesticides, types of weedicides and insecticides available to					
control different weed flora, pests and diseases and their mode of action; time of application and symptoms.					
Teaching 1 DeverDaint Descentation					
Teaching-	1. PowerPoint Present	ation			
Learning Process	2. Chalk and Talk are u	isea for Problem Solving (In-general)			
	3. Video demonstratio	n or Simulations			
	4. Laboratory Demonstrations and Practical Experiments				
MODULE-2					
INIODOLL-3				6 100N3	

Weeds, its defi	Weeds, its definition, characteristics of weeds, merits and demerits of weeds, classification of weeds, meaning of crop			
weed competition and its period in different crops. Principles and methods of weed management viz., cultural,				
mechanical, ch	emical, biological weed control methods and integrated weed management. Classification of herbicides,			
its selectivity a	nd resistance, Allelopathic effect of weed.			
Crop harvestin	g, signs of maturity in different field crops, Physiological and crop maturity, Method of harvesting			
Teaching-	1. PowerPoint Presentation			
Learning	2. Chalk and Talk are used for Problem Solving (In-general)			
Process	3. Video demonstration or Simulations			
	4. Laboratory Demonstrations and Practical Experiments			
MODULE-4	8 HOURS			
Introduction:	Concepts in crop production; geographical distribution of crops and cropping systems; economic			
importance. Ci	op Classification: Cereals, pulses, oilseeds, fiber crops, forage crops, medicinal and aromatic crops and			
horticultural cr	ops.			
Cropping Syste	ems for Major Agro-Ecological Regions: Detailed descriptions of rice based cropping systems, sugarcane			
based cropping	g systems, cotton based cropping systems, pulses and oilseeds based cropping systems, their suitability			
in different ag	ro-ecological regions. Crop rotation, its definition, principles and advantages of crop rotation. Study of			
crop adaptatio	n and its distribution. Growth and development, its definition, growth curve and factors affecting growth			
and developm	ent.			
Teaching-	1. PowerPoint Presentation			
Learning	2. Chalk and Talk are used for Problem Solving (In-general)			
Process	3. Video demonstration or Simulations			
	4. Laboratory Demonstrations and Practical Experiments			
MODULE-5	8 HOURS			
Crop Eco Systems: Irrigated and rain fed eco systems, strategies of crop production in tropical and sub- tropical regions in				
the two major e	co systems under different crops. Modern Techniques of Raising Field and Horticultural Crops Techniques			
of nursery raising, method of planting, fertilization, irrigation scheduling, weed control, and other practices to optimize				
yield, economic	evaluations.			
Crop Growth Assessment: Crop, growth parameters and their measurements.				
Teaching-	1. PowerPoint Presentation			
Learning	2. Chalk and Talk are used for Problem Solving (In-general)			
Process	3. Video demonstration or Simulations			
	4. Laboratory Demonstrations and Practical Experiments			

PRACTICAL COMPONENT OF IPCC (May cover all / major modules)

SI.NO	Experiments	
1	Identification of crops, seeds, fertilizers, pesticides & Tillage implements	
2	Effect of sowing depth on germination and seedling vigour	
3	Study of yield contributing characters and yield estimation	
4	Seed germination and viability test	
5	Numerical exercises on fertilizer requirement	
6	Plant Population and water requirement	
7	Use of tillage implements (reversible plough, one way plough, harrow, leveller, seed drill)	
8	Study of soil moisture measuring devices	
9	Measurement of field capacity, bulk density and infiltration rate	
10	Measurement of irrigation water	
11	Study of crop varieties and agronomic experiments at experimental farm	
12	Morphological description of Kharif season crops (rice).	
Course outcomes (Course Skill Set):		
At the end of the course the student will be able to:		
Expre	ess knowledge gained on the principles of agronomy	

- Recognize the various nutrients and their effects on plant health
- Plan irrigation measures for plant growth and development
- Manage weeds in a field
- Plan for sustainable agricultural production
- Apply scientific methods and tools in field preparation and for designing cropping
- Comprehend the fundamentals of crop production of cereals
- Decide on the crops, fertilizers and irrigation measures for production of pulses
- Plan for sustainable crop production of oilseeds
- Explain the techniques involved in crop production of fibre and forage crops
- Correlate parameters involved in crop cultivation and practices of crop cultivation

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

CIE for the theory component of IPCC

Two Tests each of 20 Marks (duration 01 hour)

- First test at the end of 5th week of the semester
- Second test at the end of the 10th week of the semester

Two assignments each of **10 Marks**

- First assignment at the end of 4th week of the semester
- Second assignment at the end of 9th week of the semester

Scaled-down marks of two tests and two assignments added will be CIE marks for the theory component of IPCC for **30** marks.

CIE for the practical component of IPCC

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The**15 marks** are for conducting the experiment and preparation of the laboratory record, the other **05 marks shall be for the test** conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to 15 marks.
- The laboratory test (duration 03 hours) at the end of the 15th week of the semester /after completion of all the experiments (whichever is early) shall be conducted for 50 marks and scaled down to 05 marks.

Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **20** marks.

SEE for IPCC

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours)

- 3. The question paper will have ten questions. Each question is set for 20 marks.
- 4. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 subquestions), **should have a mix of topics** under that module.
- 5. The students have to answer 5 full questions, selecting one full question from each module.

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper shall include questions from the practical component).

• The minimum marks to be secured in CIE to appear for SEE shall be the 12 (40% of maximum marks-30) in the

theory component and 08 (40% of maximum marks -20) in the practical component. The laboratory component of the IPCC shall be for CIE only. However, in SEE, the questions from the laboratory component shall be included. The maximum of 04/05 questions to be set from the practical component of IPCC, the total marks of all questions should not be more than the 20 marks.

• SEE will be conducted for 100 marks and students shall secure 35% of the maximum marks to qualify in the SEE. Marks secured will be scaled down to 50.

Suggested Learning Resources:

Books

- 1. Crop production and field experimentation by V.G. Vaidya, K.R. Sahastrabudhe and V.S. Khuspe. Continental Prakashan, Vijaynagar, Pune.
- 2. Hand book of Agriculture, ICAR Publication.
- 3. Modern techniques of raising field corps by Chidda Singh. Oxford and IBH Publishing Co. Ltd., Bangalore.
- 4. Principles of Agronomy by Sankaran S. and V.T. SubbiahMudliyar, 1991. The Bangalore Printing and Publishing Co. Ltd., Bangalore.
- 5. Agronomy by S.C. Panda, 2006. Agribios Publication, New Delhi.
- 6. Crop Production and Management by Y.B. Moranchan. Oxford and IBH Publishing Co. Ltd., Bangalore.
- 7. Principles of Agronomy by S.R. Reddy, Kalyani Publishers, Ludhiana, India.
- 8. Principles of Crop Production by Martin J.H. and Leonard W.H. the Mac Million Company, New York 1962.
- 9. Scientific Crop Production (Vol. I and II). Thakur C. Metropolitan Books Co. Pvt. Ltd., New Delhi.
- 10. Fundamentals of Agronomy. Gopal Chandra De. 1980. Oxford and IBH Publishing Co. Ltd., Bangalore
- 11. Singh, Chidda "Modem technique of raising of field crops". Oxford and IBH Publishing Company Pvt. Ltd., 1994.
- 12. Suresh Singh Tomar, YagyaDev Mishra and Shailendra Singh Kushah. 2018. Production Technology of Rabi Crops. Biotech books, New Delhi, India.
- 13. Rajendra Prasad. 2017. Textbook of field crops production, Volume 1 and 2 (Foodgrain crops & Commercial Crops). ICAR, India.
- 14. ingh, R.P., Reddy, P.S. and Kiresur, V.(eds.). "Efficient Management of Dryland Crops in India". Indian Society of Oilseed Research, DOR Rajendra Nagar, Hyderabad, 1997.
- 15. Joshi M. 2015. Textbook of Field Crops. Prentice Hall India Learning Private Limited, India.

Web links and Video Lectures (e-Resources): https://www.youtube.com/watch?v=AnnZFYXnlfw https://www.youtube.com/watch?v=8ulpy_GFLDk https://www.youtube.com/watch?v=NCp93xbSwWM https://www.youtube.com/watch?v=60qVUwLP1s8 https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg3-chapter8-1.pdf

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Quizzes
- Assignments
- Seminars
- Mini Projects

Course Code	21AG33	CIE Marks	50		
Teaching Hours/Week (L:T:P: S)	3:0:2:0	SEE Marks	50		
Total Hours of Pedagogy	40 hours Theory + 12-15 Lab slots	Total Marks	100		
Credits	04	Exam Hours	03		
* Additional one hour may be considered for Instructions if required					
Course objectives:					
Appreciate basic concepts of soil mechanics as an integral part					
 Comprehend basic engineering and mechanical properties of different types of soil. 					
Model and measure strength-deformation characteristics of soils					
 Familiar with Soil mechanics problems such as flow though soils 					

- Study about assessing stability of slopes and earth pressure on rigid retaining structures
- Understand the basic principles of Surveying
- Learn Linear and Angular measurements to arrive at solutions to basic surveying problems.
- Employ conventional surveying data capturing techniques and process the data for computations.
- Analyze the obtained spatial data to compute areas and volumes and draw contours to represent 3D data on plane figures.

Teaching-Learning Process (General Instructions)

These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Adopt different types of teaching methods to develop the outcomes through PowerPoint presentations and Video demonstrations or Simulations.
- 2. Chalk and Talk method for Problem Solving.
- 3. Arrange visits to show the live working models other than laboratory topics.
- 4. Adopt collaborative (Group Learning) Learning in the class.
- 5. Adopt Problem Based Learning (PBL), which fosters students Analytical skills and develops thinking skills such as evaluating, generalizing, and analyzing information.

Conduct Laboratory Demonstrations and Practical Experiments to enhance experiential skills

MODULE-1	8 HOURS			
Engineering P	roperties of Soils-Water content; Unit weight of soil; Specific gravity; Void ratio; Porosity; Degree of			
saturation; Fu	nctional relationships; Determination of index properties; Liquid limit; Plastic limit; Shrinkage limit;			
Plasticity index	k; Particle size distribution curve. Classification of Soils and Clay Mineralogy-Particle size classification;			
Textural classif	fication; Indian standards classification; Soil structure;			
Soil Hydraulics-	Modes of occurrence of water in soils; Stress condition in soil; Permeability; Factors affecting permeability;			
Laboratory and	field methods of determining permeability coefficients.			
Well Hydraulio	cs; Definitions; Dupuits theory; Pumping out test; Pumping in test; Interference among wells; Seepage			
analysis; 2-dim	iensional flow; Flow nets			
Elasticity Appl	ied to Soils-State of stress at a point; Equilibrium equations; Strain components; Stress distribution;			
Pressure distri	Pressure distribution diagrams; Newmark's influence charts; Contact pressure; Principal stresses and maximum shear.			
Compression a	nd Compressibility, Vertical sand drain; Compaction; Field compaction methods and controls.			
Teaching-	1. PowerPoint Presentation			
Learning	2. Chalk and Talk are used for Problem Solving (In-general)			
Process	3. Video demonstration or Simulations			
	4. Laboratory Demonstrations and Practical Experiments			
	·			

MODULE-2			
IOURS			

Strength and Stability-Shear strength; Mohr circle of stresses; Measurement of shear strength; direct shear tests; Tri-axial compression test; Unconfined compression test; vane shear test; Pore pressure parameters; Active and passive earth pressures; Stability of slopes; Taylors stability number and stability curves;

Bearing Capacity of Soil; Rankine analysis; Terzaghi analysis; General and local shear failure; Mayerhoeff's analysis; Effect of water table on bearing capacity; Stabilization of Soil and Site Investigation-Introduction; Method of Stabilisation; Site exploration; Depth of exploration; Methods of site exploration; Soil samples and samplers.

Teaching-	1. PowerPoint Presentation			
Learning Proces	s 2. Chalk and Talk are used for Problem Solving (In-general)			
	3. Video demonstration or Simulations			
	4. Laboratory Demonstrations and Practical Experiments			
MODULE-3	8			
HOURS				
INTRODUCTION	: Overview of plane surveying (chain, compass and plane table), Objectives, Principles and classifications.			
Distance measu	rement conventional symbols and methods; use of chain and tape, Electronic distance measurements,			
Meridians, Azim	uths and Bearings, declination, computation of angle.			
LEVELING AND	CONTOURING: Concept and Terminology, Temporary and permanent adjustments method of leveling.			
Contouring: Co	ntours, Methods of contouring, Interpolation of contours, contour gradient, characteristics of contours			
and uses.				
Teaching-	1. PowerPoint Presentation			
Learning	2. Chalk and Talk are used for Problem Solving (In-general)			
Process	3. Video demonstration or Simulations			
	4. Laboratory Demonstrations and Practical Experiments			
MODULE-4	8			
HOURS				
COMPUTATION	OF AREAS AND VOLUMES: Area from field notes, computation of areas along irregular boundaries and			
area consisting	of regular boundaries. Embankments and cutting for a level section and two level sections with and without			
transverse slope	es, determination of the capacity of reservoir, volume of barrow pits.			
THEODOLITE &	TACHEOMETRIC SURVEYING			
Theodolite, des	cription, uses and adjustments – temporary and permanent, measurement of horizontal and vertical			
angles. Principle	s of Electronic Theodolite. Trigonometrical leveling, Traversing.			
Stadia and tan	gential methods of Tacheometry.			
Teaching-	1. PowerPoint Presentation			
Learning	2. Chalk and Talk are used for Problem Solving (In-general)			
Process	3. Video demonstration or Simulations			
	4. Laboratory Demonstrations and Practical Experiments			
MODULE 5	8 HOURS			
INDTRODUCTIO	N TO ADVANCED SURVEYING: Introduction to geodetic surveying, Total Station and Global positioning			
system, Introduction to Geographic information system (GIS) & Modern Instruments and its applications. Modern				
Surveying Instruments Introduction, Electromagnetic spectrum, Electromagnetic distance measurement, Total station,				
Lidar scanners for topographical survey.				
Aerial Photogrammetry Introduction, Uses, Aerial photographs, Definitions, Scale of vertical and tilted photograph (simple				
problems), Grou	Ind Co-ordinates (simple problems), Relief Displacements (Derivation).			
Teaching-	1. PowerPoint Presentation			
Learning	2. Chalk and Talk are used for Problem Solving (In-general)			
Process	3. Video demonstration or Simulations			
	4. Laboratory Demonstrations and Practical Experiments			

PRACTICAL COMPONENT OF IPCC (May cover all / major modules)

SI.NO	Experiments				
1	Special gravity of soil solids				
2	Grain size distribution				
3	Atterberg Limits				
4	Field density Test (Sand replacement method)				
5	Permeability determination (constant head and falling head methods)				
6	Direct shear test in cohesion-less soil				
7	Unconfined compression test in cohesive soil				
8	a) Measurements of distances using tape along with horizontal planes and slopes, direct ranging.				
	b) Setting out perpendiculars. Use of cross staff, optical square.				
9	Measurements of bearings / directions using prismatic compass, setting of geometrical figures using prismatic compass				
10	Determination of reduced levels of points using dumpy level/auto level (differential leveling and inverted				
	leveling).				
11	To conduct profile leveling, cross sectioning and block leveling. Plotting profile and cross sectioning in excel. Block contour on graph paper to scale.				
12	Measurement of horizontal angle by repetition and reiteration methods				
13	Determination of horizontal distance to a base in accessible object using theodolite by single plane and double				
15	plane method.				
14	To determine distance and elevation using tachometric surveying with horizontal and inclined line of sight.				
15	Demonstration of Minor instruments like Clinometer, Ceylon Ghat Tracer, Box sextant, hand Level, Digital				
	Planimeter and Pentagraph				
Course	outcomes (Course Skill Set):				
At the e	Acquire an understanding of the procedures to determine properties of any type of soil classify the soil based				
	on its index properties.				
•	Able to determine permeability property of soils and acquires conceptual knowledge about stresses due to seepage and effective stress.				
•	Able to estimate seepage losses across hydraulic structures.				
•	Able to estimate shear strength parameters of different types of soils using				
•	the data of different shear tests and comprehend Mohr-Coulomb failure theory				
•	Ability to solve practical problems related to bearing capacity				
•	Able to plan and execute geotechnical site investigations for Hydraulic structures				
•	Possess a sound knowledge of fundamental principles Geodetics				
•	Measurement of vertical and horizontal plane, linear and angular dimensions to arrive at solutions to basic				
	Surveying problems.				
	Analyse the obtained spatial data and compute areas and volumes. Represent 3D data on plane figures as				
	contours.				
Assessn	nent Details (both CIE and SEE)				
The we	ghtage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum				
passing	mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the				
academ	ic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35%				
(18 Mar	(18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total				
of the C	of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together				
CIE for t	he theory component of IPCC				
Two Tes	sts each of 20 Marks (duration 01 hour)				

- First test at the end of 5th week of the semester
- Second test at the end of the 10th week of the semester

Two assignments each of 10 Marks

- First assignment at the end of 4th week of the semester
- Second assignment at the end of 9th week of the semester

Scaled-down marks of two tests and two assignments added will be CIE marks for the theory component of IPCC for **30** marks.

CIE for the practical component of IPCC

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The**15 marks** are for conducting the experiment and preparation of the laboratory record, the other **05 marks shall be for the test** conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to 15 marks.
- The laboratory test (duration 03 hours) at the end of the 15th week of the semester /after completion of all the experiments (whichever is early) shall be conducted for 50 marks and scaled down to 05 marks.

Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **20 marks**.

SEE for IPCC

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours)

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 subquestions), **should have a mix of topics** under that module.
- 3. The students have to answer 5 full questions, selecting one full question from each module.

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper shall include questions from the practical component).

- The minimum marks to be secured in CIE to appear for SEE shall be the 12 (40% of maximum marks-30) in the theory component and 08 (40% of maximum marks -20) in the practical component. The laboratory component of the IPCC shall be for CIE only. However, in SEE, the questions from the laboratory component shall be included. The maximum of 04/05 questions to be set from the practical component of IPCC, the total marks of all questions should not be more than the 20 marks.
- SEE will be conducted for 100 marks and students shall secure 35% of the maximum marks to qualify in the SEE. Marks secured will be scaled down to 50.

Suggested Learning Resources:

Books

- 1. Soil Mechanics and Foundation Engineering Murthy, V.N.S UBS Publishers and Distributors, New Delhi. 1996
- 2. Soil Mechanics and Foundation Punmia, B.C New Delhi STD Book House, 1987 2017
- 3. Basic and Applied Soil Mechanics Gopalrajan and Rao, A.S.R. New Age International (P) Ltd., New delhi. 2000
- 4. Soil Mechanics T.W. Lambe and R.V. Whitman John Wiley & Sons. 1969
- 5. Geotechnical Engineering Donald P Coduto Phi Learning Private Limited, New Delhi.
- 6. Surveying (Vol 1, 2 & 3) B.C.Punmia, Ashok Kumar Jain and Arun Kumar Jain Laxmi Publications (P) ltd., New Delhi
- 7. Surveying (Vol 1 & 2) Duggal S K Tata Mc-Graw Hill Publishing Co. Ltd New Delhi 2004
- 8. Elements of Plane Surveying Arthur R Benton and Philip J Taety McGraw Hill 2000
- 9. Surveying Vol 1, 2 & 3 Arora K R Standard Book House, Delhi, 2004

Web links and Video Lectures (e-Resources):

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Quizzes
- Assignments
- Seminars
- Mini Projects

	ME	CHANICS OF MATERIALS AND MA	ACHINES	
Course Code		21AG34	CIE Marks	50
Teaching Hours/	Week (L:T:P: S)	3-0-0-0	SEE Marks	50
Total Hours of Pedagogy 40 Total Marks 100				
Credits		03	Exam Hours	03
Course objective	es:		I	
To lear	n about simple stresses an	d strains and their applications.		
To lear	n how to find shear force a	and bending moment and constru	uction of SFD & BMD	
To und	erstand the concept of ma	chines, mechanisms and to analy	ze a mechanism for displac	ement, velocity
and acc	eleration at any point in a	n moving link.		
To und	erstand the force-motion	relationship in components subje	cted to external forces and	analysis of
standar	d mechanisms			
To under	erstand the theory of gear	s and gear trains.		
To enal	ole the students to unders	tand the general procedure for d	esigning any machine parts	
Teaching-Learni	ng Process (General Instru	uctions)		
These are sampl	e strategies, which teache	ers can use to accelerate the attai	nment of the various course	e outcomes.
1. Adopt diffe	rent types of teaching me	thods to develop the outcomes	through PowerPoint prese	ntations and Video
demonstrat	ions or Simulations.			
2. Chalk and T	alk method for Problem So	olving.		
3. Adopt flippe	ed classroom teaching me	thod.		
4. Adopt colla	porative (Group Learning)	learning in the class.		
5. Adopt Prob	em Based Learning (PBL)	which fosters students' analytica	l skills and develops thinkin	g skills such as
evaluating.	generalizing, and analysing	g information.		S shine such as
	Berrer an 2008, and an arran form	Module-1		
Simple Stresses	and Strains: Elasticity and	plasticity – Types of stresses and	strains – Hooke's law – Wo	rking stress –
Factor of safety	– Lateral strain, Poisson's	ratio and volumetric strain – Elas	tic moduli and the relations	hip between them
Teaching-	1. Power-point Preser	ntation,		
Learning Proces	s 2. Video demonstratio	on or Simulations,		
	3. Chalk and Talk are	used for Problem Solving./White	board	
		Module-2		
Shear Force and	Bending Moments: Type	s of supports – Types of beams -	- Shear force and bending r	noment diagrams
for simply suppo	rted - Cantilever and over	hanging beams with point loads,	uniformly distributed load,	uniformly varying
loads and couple	es – Relationship between	shear force and bending momen	ıt.	
Teaching-	1. Power-point Presen	itation,		
Learning Proces	s 2. Video demonstratio	on or Simulations,		
	3. Chalk and Talk are u	used for Problem Solving./White I	board	
Module-3				
Introduction: Mechanisms and machines, Kinematic pairs-types, degree of freedom, Kinematic chains and their				
classification, Kinematic inversions,				
Velocity and Acceleration analysis of planar mechanisms Graphical method: Velocity and Acceleration Analysis of				
Mechanisms Velocity and acceleration analysis of four bar mechanism, slider crank mechanism.				
Velocity and Acceleration Analysis of Mechanisms (Analytical Method): Velocity and acceleration analysis of				
four bar mechanism, slider crank mechanism using complex algebra method.				
Teaching-	1. Power-point Presentat	ion,		
Learning	2. Video demonstration o	or Simulations,		
Process	Process 3. Chalk and Talk are used for Problem Solving./White board			
Module-4				

Static force analysis: Static equilibrium, analysis of four bar mechanism, slider crank mechanism, shaper mechanism.
Dynamic force analysis: D'Alembert's principle, analysis of four bar and slider crank mechanism, shaper mechanism.
Flywheel: Introduction to Flywheel and calculation of its size for simple machines like punching machine, shearing machine
Spur Gears: Gear terminology, law of gearing, path of contact, arc of contact, contact ratio of spur gear..
Gear Trains: Simple gear trains, compound gear trains. Epicyclic gear trains.

Teaching-	1. Power-point Presentation,
Learning	2. Video demonstration or Simulations,
Process	3. Chalk and Talk are used for Problem Solving./White board

Module-5

MACHINE DESIGN – Definition, Classification of machine design, General considerations in machine design, General procedure in machine design. Fundamental units, Mass and Weight, inertia, laws of motion, force, moment of force, couple mass density, torque, work, power and energy. LEVERS – Introduction, application of levers in engineering practice, design of lever hand levers, foot lever, and cranked lever. Springs – Introduction, types of springs, material for helical springs, spring wire, terminology

Teaching- 1. Power-point Presentation,

Learning	2. Video demonstration or Simulations,
Dresses	2. Chally and Tally are used for Droblem Calu

Process3. Chalk and Talk are used for Problem Solving./White board

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

- 1. The students would be able to understand the behaviour of materials under different stress and strain conditions.
- 2. Knowledge of mechanisms and their motion and the inversions of mechanisms
- 3. Analyse the mechanisms for static and dynamic equilibrium.
- 4. Carry out the balancing of rotating and reciprocating masses
- 5. Analyse different types of governors used in real life situation.
- 6. Various basic terms related to machine design aspect

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

Three Unit Tests each of 20 Marks (duration 01 hour)

- 1. First test at the end of 5^{th} week of the semester
- 2. Second test at the end of the 10th week of the semester
- 3. Third test at the end of the 15th week of the semester

Two assignments each of 10 Marks

- 4. First assignment at the end of 4th week of the semester
- 5. Second assignment at the end of 9th week of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for **20 Marks** (duration 01 hours)

6. At the end of the 13th week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be **scaled** down to 50 marks

(to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (duration 03 hours)

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 subquestions), **should have a mix of topics** under that module.

The students have to answer 5 full questions, selecting one full question from each module.

Suggested Learning Resources:

Books

- 1. R.S. Khurmi, Theory of Machines, Khanna Publishers, 2003.
- 2. S. S. Ratan, Theory of Machines, Tata McGraw Hill, 2nd Edition, 2005
- 3. Ghosh A. and Mallick A.K, Theory of Mechanisms and Machines, Affiliated East-West Press, 2nd Edition, 1988.
- 4. Thomas Bevan, Theory of Machines, CBS Publishers, 3rd Edition, 1984
- 5. J.S Rao. & R.V Dukkipati, Mechanism and Machine Theory, Newagepublishers, 2nd edition 1992

Web links and Video Lectures (e-Resources):

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Quizzes
- Assignments
- Seminars

	BASIC WORKSHOP PRACTICE LAB			
Course	Code	21AGL35	CIE Marks	50
Teachin	g Hours/Week (L:T:P: S)	(0:0:2:0)	SEE Marks	50
Credits		01	Exam Hours	03
Course	objectives:			
•	To identify tools, work material a	and measuring instruments useful f	for fitting, carpentry, Sheet	metal working
	and Smithy practice			
•	To handle tools and instruments	and use them to prepare joints of	specific shape and size	
SI.NO		Experiments		
1.	Fitting:			
	Introduction, Various tools used	in fitting shop- Holding tools; Mark	ing and Measuring tools; St	riking tools;
	Cutting tools; finishing tools			
2.	Preparation of Square fitting mod	del in fitting shop		
3.	Preparation of V fitting model in	fitting shop		
4.	Carpentry:	an and characteristics. Various tool	used in comentry chen. II	olding tools.
	Marking and Maasuring tools: St	ciking tools: Planing tools: Cutting t	s used in carpentry shop- H	olding tools;
5	iviarking and Measuring tools; Striking tools; Planing tools; Lutting tools – saws and chisels			
5.	 a. Preparation of 1-Lap joint model in Carpentry Shop b. Preparation of Dove-tail Lap joint model in Carpentry shop 			
0. 7.	7 Sheet metal working.			
	Introduction, Sheet metals used	in metal work; Various tools used- I	Holding tools; Marking and	Measuring tools;
	Striking tool – hammers and mall	ets; Snips; Stakes	5, 5	σ,
8.	Preparation of Open scoop mode	l in Sheet metal shop		
9.	Preparation of Rectangular tray r	nodel in Sheet metal shop		
10.	Smithy:			
	Introduction, Principle of forging	Various tools used- Holding tools;	Marking and Measuring to	ols; Striking tool –
	hammers; Flatters; Swage block;	V-Block; Tongs, etc		
11.	. To prepare S-Hook from a given i	round rod		
12.	To make a square rod from a give	en round rod.		
Course	outcomes (Course Skill Set):			
At the e	nd of the course the student will b	e able to:		
1.	To select suitable tools and equip	ment to prepare joints using bencl	h-work tools.	
2.	2. To produce joints using materials of specific snape and size by a suitable PO1,PO3, PO5, PSO1, set of operations			set of operations
	and check the accuracy of shape a	and dimensions using suitable mea	suring tools.	

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. The student has to secure not less than 35% (18 Marks out of 50) in the semester-end examination (SEE).

Continuous Internal Evaluation (CIE):

CIE marks for the practical course is **50 Marks**.

The split-up of CIE marks for record/ journal and test are in the ratio **60:40**.

- Each experiment to be evaluated for conduction with observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments designed by the faculty who is handling the laboratory session and is made known to students at the beginning of the practical session.
- Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks.
- Total marks scored by the students are scaled downed to 30 marks (60% of maximum marks).
- Weightage to be given for neatness and submission of record/write-up on time.
- Department shall conduct 02 tests for 100 marks, the first test shall be conducted after the 8th week of the semester and the second test shall be conducted after the 14th week of the semester.
- In each test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce.
- The suitable rubrics can be designed to evaluate each student's performance and learning ability. Rubrics suggested in Annexure-II of Regulation book
- The average of 02 tests is scaled down to **20 marks** (40% of the maximum marks).

The Sum of scaled-down marks scored in the report write-up/journal and average marks of two tests is the total CIE marks scored by the student.

Semester End Evaluation (SEE):

SEE marks for the practical course is 50 Marks.

SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the University

- All laboratory experiments are to be included for practical examination.
- (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. **OR** based on the course requirement evaluation rubrics shall be decided jointly by examiners.
- Students can pick one question (experiment) from the questions lot prepared by the internal /external examiners jointly.
- Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners.
- General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners)

• Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

The duration of SEE is 03 hours

Rubrics suggested in Annexure-II of Regulation book

Suggested Learning Resources: Text Books

- 1. 1. Elements of Mechanical Engineering Hajra Choudhury & others, Media Promoters 2010.
- 2. 2. The Elements of Workshop Technology Vol I & II, S.K. Hajra Choudhury, A.K. Hajra Choudhury, Nirjhar Roy, 11th edition 2001 others, Media Promoters and Publishers, Mumbai.

	Introduction to PYTHON (AEC-III)			
Course	Code	21AG381	CIE Marks	50
Teachir	Teaching Hours/Week (L:T:P: S) 0:0:2:0 SEE Marks 50			
Credits	Credits 25 Exam Hours 2			2
Course	objectives:			
• St	tatistical tests. The course provides	hands-on training in usage of ba	sic concepts, control structur	es, data
st	ructures, object oriented programm	ning, exceptional handling and p	lotting of graphical entities.	
SI.NO		Experiments		
1	Implement the following tasks	•		
	a) Write a python program to che	ck whether the number is positi	ve or negative.	
	b) Write a python program to find	, d whether a given number is eve	n or odd.	
	c) Write a python program to find	l biggest number among three n	umbers.	
2	Implement the following tasks			
	a)Write a python program to disp	laying reversal of a number.		
	b) Write a python program to prin	nt factorial of a number		
	c) Write a python program to gen	erate prime numbers series up t	o N	
3	Implement following problems us	sing python script		
	a) Swapping of two number with	and without using temporary va	riable.	
	b) If the age of Ram, Sam, and Kh	nan are input through the keybo	ard, write a python program	to determine the
	eldest and youngest of the three.			
	c) Arithmetic operations (Additio	n, Subtraction, Multiplication, a	nd Division) on integers. Inpu	it the two integer
	values and operator for performing	ng arithmetic operation through	keyboard.	
4	Implement the following tasks			
	a) Implement the python program to generate the multiplication table.			
	b) Implement Python program to	find sum of natural numbers		
	c) If the first name of a student is input through the keyboard, write a program to display the vowels and			y the vowels and
	consonants present in his/her nai	ne.		
5	Implement the following tasks			
	a) The marks obtained by a stude	nt in 5 different subjects are inp	ut through the keyboard. Find	d the average and
	print the student grade as per the	e SIETK examination policy.		
	b) Given a number x, determine v	whether it is Armstrong number	or not. Hint: For example, 37	1 is an Armstrong
	number since $3^{*}3 + 7^{*}3 + 1^{*}3$	= 3/1. Write a program to find a	Il Armstrong number in the ra	ange of 0 and 999.
6	Implement the following tasks			
	a) Write a Python script to • crea	te a list • access elements from a	a list • slice lists • change or a	add elements to a
	list • delete or remove elements	rrom a list		for an list
	b) Write a Python script to read th	he values from a list and to displate the cimilarity between two list	ay largest and smallest numb	ers from list.
7	c) while a Python script to compu	the the similarity between two is	ols.	
/	a) Write a Puthon script to read s	at of values from a Tuple to perf	orm various operations	
	h) Write a Python script to read so	m basic dictionary operations lik	a insert delete and Display	
	c) Write a Python program to cou	nt the occurrence of each word	in a given sentence	
8	Implement the following tasks		in a given sentence.	
0	a) Write a Python script to create	Telephone Directory using dict	ionary and list to perform ha	sic functions such
	as Add entry. Search, Delete entry	y. Update entry. View and Exit.	ionary and list to perform bu	
	b) Implement Python script to dis	play power of given numbers us	ing function.	
	c) Implement a Python program that takes a list of words and returns the length of the longest one using function			
	, , , ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	Demonstration Experiments	(For CIE)	0
9	Implement the following tasks	·····	. ,	
	a) Implement Python program to	perform various operations on s	tring using string libraries.	
	b) Implement Python program to	remove punctuations from a giv	en string.	

	c) Write a Python program to change the case of the given string (convert the string fromlower case to upper case). If the entered string is —computer , your program should output—COMPUTER without using library functions.		
10	Implement the following tasks		
	a)Implement Python program to capitalize each word in a string. For example, the entered sentence —god		
	helps only people who work hard to be converted as —God Helps Only People Who Work Hard		
	e) Write a Python script to display file contents.		
	f) Write a Python script to copy file contents from one file to another.		
11	Implement the following tasks		
	a) Write a Python script to combine two text files contents and print the number of lines, sentences, words,		
	characters and file size.		
	b) Write a Python commands to perform the following directory operations. $ullet$ List Directories and Files $ullet$		
	Making a New Directory • Renaming a Directory or a File • Removing Directory or File		
12	Implement the following tasks a) Create a package named Cars and build three modules in it namely, BMW,		
	Audi and Nissan. Illustrate the modules using class. Finally we create the init .pyfile. This file will be placed		
	inside Cars directory and can be left blank or we can put the initialization code into it. b) Write a python script		
	to display following shapes using turtle.		
	$\square \bigcirc \bigtriangleup \bigcirc$		
Course	outcomes (Course Skill Set):		
At the e	end of the course the student will be able to:		
•	Ability to program on basic concepts, controlstructures.		
•	Ability to implement data structures and their operations		
•	Ability to work on object oriented programming		
•	Ability to handle exceptional handling and plotting of graphical entities.		
•	Ability to develop any real world problem		
Assessn	nent Details (both CIE and SEE)		
The we	eightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum		
passing	g mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the		
acader	academic requirements and earned the credits allotted to each course. The student has to secure not less than 35% (18		
Marks	out of 50) in the semester-end examination(SEE).		
Continu	Continuous Internal Evaluation (CIE):		
CIE mar	ks for the practical course is 50 Marks .		
The spli	t-up of CIE marks for record/ journal and test are in the ratio 60:40 .		
• E	ach experiment to be evaluated for conduction with observation sheet and record write-up. Rubrics for the		
e	valuation of the journal/write-up for hardware/software experiments designed by the faculty who is handling the		
	aboratory session and is made known to students at the beginning of the practical session.		
• R	ecord should contain all the specified experiments in the syllabus and each experiment write-up will be		
e	valuated for 10 filarity.		
• 1	Veightage to be given for peetness and submission of record (write up on time.		
• •	veigntage to be given for heatness and submission of record/write-up on time.		
• 0	epartment shall conduct 02 tests for 100 marks, the first test shall be conducted after the 8 week of the		
	a asch toct toct write up conduction of experiment accentable result and procedural knowledge will carry a		
w v	reach test, test while ap, conduction of experiment, acceptable result, and procedular knowledge will carry a reightage of 60% and the rest 40% for viva-voce.		
• T	he suitable rubrics can be designed to evaluate each student's performance and learning ability. Rubrics		
S	uggested in Annexure-II of Regulation book		
• T	he average of 02 tests is scaled down to 20 marks (40% of the maximum marks).		
The Sun	n of scaled-down marks scored in the report write-up/journal and average marks of two tests is the total CIE marks		
scored	by the student.		
Seme	ster End Evaluation (SEE):		

SEE marks for the practical course is 50 Marks.

SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the University All laboratory experiments are to be included for practical examination.

(Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. **OR** based on the course requirement evaluation rubrics shall be decided jointly by examiners. Students can pick one question (experiment) from the questions lot prepared by the internal /external examiners jointly.

Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners. General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Vivavoce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners)

Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero. The duration of SEE is 03 hours

Rubrics suggested in Annexure-II of Regulation book

Suggested Learning Resources:

1. VamsiKurama, Python Programming: A Modern Approach, Pearson

2. ReemaThareja, Python Programming - Using Problem Solving Approach, First Edition (English, Paperback), Oxford University Press.

- 3. Mark Lutz, Learning Python, Orielly
- 4. Allen Downey, Think Python, Green Tea Press
- 5. W.Chun, Core Python Programming, Pearson.
- 6. Kenneth A. Lambert, Introduction to Python, Cengage

7. Michael T. Goodrich , Roberto Tamassia, Michael H. Goldwasser, Data Structures and Algorithms in Python, 1st Edition , kindle Edition .

SENSORS & ACTUATORS (AEC-III)					
Course Code 21AG382 CIE Marks 50					
Teaching Hours/Week (L:T:P: S)	1:0:0:0	SEE Marks	50		
Total Hours of Pedagogy	16	Total Marks	100		
Credits	01	Exam Hours	01		

Course objectives:

- To provide the fundamental knowledge about sensors and measurement system.
- To impart the knowledge of static and dynamic characteristics of instruments and understand the factors in selection of instruments for measurement.
- To discuss the principle, design and working of transducers for the measurement of physical time varying quantities.
- To Understand the working of various actuators suitable in industrial process control systems

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) needs not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.

	and Leave in a (DDL) which for the students' Analytical skills, develop design		
5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design			
thinking skills such as the ability to design, evaluate, generalize, and analyse information rather than			
simply recall it			
	Na-Jula 1		
Composite and management			
Sensors and measurem	ent system: Sensors and transducers, Classifications of transducers-primary		
& secondary, active & p	assive, analog and digital transducers. Smart sensors.		
Measurement: Definit	ion, significance of measurement, instruments and measurement systems.		
Mechanical, electrical a	nd electronic instruments.		
Teaching Learning	Chalk and heard Astive Learning Demonstration		
Teaching-Learning	Chaik and board, Active Learning, Demonstration		
Process			
Static and Dynamic Cha	racteristics: Static calibration and error calibration curve, accuracy and precision,		
indications of precision	n, static error, scale range and scale span, factors influencing the choice of		
transducers/instrument	S.		
Dynamic response – Dyi	namic characteristics, natural frequency and Damping ratio.		
Teaching-Learning	Chalk and board, Active Learning, Demonstration		
Process			
	Module-3		
Measurement of Temp	erature: RTD, Thermistor, Thermocouple, Thermopile, AD590.		
Measurement of Displa	cement: Introduction, Principles of Transduction, Variable resistance devices,		
variable Inductance Tra	nsducer, Variable Capacitance Transducer		
Teaching-Learning	Chalk and board, Active Learning, Demonstration		
Process			
	Module-4		
Measurement of Strain	: Introduction, Types of Strain Gauges, Theory of operation of resistance strain		
gauges, Applications.			
Measurement of Force	& Torque: Introduction, Force measuring sensor –Load cells, Hydraulic load cell,		
electronic weighing syste	em. Torque measurement		
Teaching-Learning	Chalk and board, Active Learning, Demonstration		
Process			
	Module-5		
Actuators and process	control system: Introduction. Block diagram and description of process control		
system with an example,	Actuators, Control elements.		
Electrical actuating syste	ems: Solid-state switches, Solenoids		
Pneumatic Actuators, Hy	ydraulic Actuators		
Teaching-Learning	Chalk and board, Active Learning, Demonstration		
Process			
Course outcome (Course	e Skill Set)		
At the end of the course	the student will be able to:		
 Understand the 	fundamental concepts of sensors and actuator system.(L2)		
 Describe the pri 	• Describe the principle and working of different types of sensors and actuators used in industrial		
application.(L2)			
• Illustrate the applications of different transducers for temperature, displacement, level, strain,			
force and torque measurements			

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous internal Examination (CIE)

Three Tests (preferably in MCQ pattern with 20 questions) each of **20 Marks (duration 01 hour**)

- 1. First test at the end of 5th week of the semester
- 2. Second test at the end of the 10th week of the semester
- 3. Third test at the end of the 15th week of the semester

Two assignments each of 10 Marks

- 1. First assignment at the end of 4th week of the semester
- 2. Second assignment at the end of 9th week of the semester

Quiz/Group discussion/Seminar, any two of three suitably planned to attain the COs and POs for **20 Marks** (duration **01 hours**)

The sum of total marks of three tests, two assignments, and quiz /seminar/ group discussion will be out of 100 marks and shall be **scaled down to 50 marks**

100 marks and shall be scaled down to 50 i

Semester End Examinations (SEE)

SEE paper shall be set for 50 questions, each of 01 mark. The pattern of the question paper is MCQ (multiple choice questions). The time allotted for SEE is **01 hour.** The student has to secure minimum of 35% of the maximum marks meant for SEE.

Suggested Learning Resources:

Textbook

1. Electrical and Electronic Measurements and Instrumentation, A K Sawhney, 17th Edition, (Reprint 2004), Dhanpat Rai & Co. Pvt. Ltd., 2004.

2. Instrumentation: Devices and Systems, C S Rangan, G R Sarma, V S V Mani, 2nd Edition (32 Reprint), McGraw Hill Education (India), 2014.

3. Process Control Instrumentation Technology by C D Johnson, 7th Edition, Pearson Education Private Limited, New Delhi 2002.

Web links and Video Lectures (e-Resources):

- <u>https://onlinecourses.nptel.ac.in/noc21_ee32/preview</u>
- https://archive.nptel.ac.in/courses/108/108/108108147/
- https://www.youtube.com/watch?v=HMNYf1QQ83U

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- A small project to use sensors to study home activities.
- Design Smart Digital School Bell with Timetable Display.
- Design contactless water level controller.

FUNDAMENTALS OF VIRTUAL REALITY				
Course Code	21AG383	CIE Marks	50	
Teaching Hours/Week (L:T:P: S)	0:2:0:0	SEE Marks	50	
Total Hours of Pedagogy	30	Total Marks	100	
Credits	01	Exam Hours	01	

Course objectives:

- Describe how VR systems work and list the applications of VR.
- Understand the design and implementation of the hardware that enables VR systems to be built.
- Understand the system of human vision and its implication on perception and rendering.
- Explain the concepts of motion and tracking in VR systems.
- Describe the importance of interaction and audio in VR systems.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- Adopt different types of teaching methods to develop the outcomes through PowerPoint presentations and Video demonstrations or Simulations.
- Chalk and Talk method for Problem Solving.
- Adopt flipped classroom teaching method.

- Adopt collaborative (Group Learning) learning in the class.
- Adopt Problem Based Learning (PBL), which fosters students' analytical skills and develops thinking skills such as evaluating, generalizing, and analysing information.

Module-1

Introduction to Virtual Reality: Defining Virtual Reality, History of VR, Human Physiology and Perception, Key Elements of Virtual Reality Experience, Virtual Reality System, Interface to the Virtual World-Input & output- Visual, Aural & Haptic Displays, Applications of Virtual Reality.

Dispidys, Appl			
Teaching-	1. Power-point Presentation,		
Learning	2. Video demonstration or Simulations,		
Process	3. Chalk and Talk are used for Problem Solving./White board		
Module-2			
Representing	the Virtual World : Representation of the Virtual World, Visual Representation in VR, Aural		
Representatio	n in VR and Haptic Representation in VR		
Teaching-	1. Power-point Presentation,		
Learning Proce	ss 2. Video demonstration or Simulations,		
	3. Chalk and Talk are used for Problem Solving./White board		
Module-3			
The Geometr	y of Virtual Worlds & The Physiology of Human Vision: Geometric Models, Changing Position and		
Orientation, A	xis-Angle Representations of Rotation, Viewing Transformations, Chaining the Transformations, Human		
Eye, eye move	ments & implications for VR.		
Teaching-	1. Power-point Presentation,		
Learning	2. Video demonstration or Simulations,		
Process	3. Chalk and Talk are used for Problem Solving./White board		
Module-4			
Visual Percept	ion & Rendering : Visual Perception - Perception of Depth, Perception of Motion, Perception of Color,		
Combining Sou	rces of Information		
Visual Renderin	ng -Ray Tracing and Shading Models, Rasterization, Correcting Optical Distortions, Improving Latency and		
Frame Rates			
Teaching-	1. Power-point Presentation,		
Learning	2. Video demonstration or Simulations,		
Process	3. Chalk and Talk are used for Problem Solving./White board		
Module-5			
Motion & Trac	king : Motion in Real and Virtual Worlds- Velocities and Accelerations, The Vestibular System, Physics in the		
Virtual World,	Mismatched Motion and Vection		
Tracking- Track	ing 2D & 3D Orientation, Tracking Position and Orientation, Tracking Attached Bodies		
Teaching-	1. Power-point Presentation,		
Learning	2. Video demonstration or Simulations,		
Process	3. Chalk and Talk are used for Problem Solving./White board		
Course outcom	e (Course Skill Set)		
At the end of th	ne course the student will be able to:		
CO1: Describe I	now VR systems work and list the applications of VR.		
CO2: Understar	nd the design and implementation of the hardware that enables VR systems to be built.		
CO3: Understar	nd the system of human vision and its implication on perception and rendering.		
CO4: Explain the concepts of motion and tracking in VR systems.			
CO5: Describe the importance of interaction and audio in VR systems.			

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous internal Examination (CIE)

Three Tests (preferably in MCQ pattern with 20 questions) each of **20 Marks (duration 01 hour**)

- 1. First test at the end of 5^{th} week of the semester
- 2. Second test at the end of the 10^{th} week of the semester
- 3. Third test at the end of the 15th week of the semester

Two assignments each of **10 Marks**

- 1. First assignment at the end of 4th week of the semester
- 2. Second assignment at the end of 9th week of the semester

Quiz/Group discussion/Seminar, any two of three suitably planned to attain the COs and POs for **20 Marks** (duration **01** hours)

The sum of total marks of three tests, two assignments, and quiz /seminar/ group discussion will be out of 100 marks and shall be scaled down to 50 marks

Semester End Examinations (SEE)

SEE paper shall be set for 50 questions, each of 01 mark. The pattern of the question paper is MCQ (multiple choice questions). The time allotted for SEE is **01 hour.** The student has to secure minimum of 35% of the maximum marks meant for SEE.

Suggested Learning Resources:

Books

1. Virtual Reality, Steven M. LaValle, Cambridge University Press, 2016

2. Understanding Virtual Reality: Interface, Application and Design, William R Sherman and Alan B Craig, (The Morgan Kaufmann Series in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002

3. Developing Virtual Reality Applications: Foundations of Effective Design, Alan B Craig, William R Sherman and Jeffrey D Will, Morgan Kaufmann, 2009.

Reference Books:

1. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005.

2. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", Addison Wesley, USA, 2005.

- 3. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005.
- 4. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003.

Web links and Video Lectures (e-Resources):

http://lavalle.pl/vr/book.html https://nptel.ac.in/courses/106/106/106106138/ https://www.coursera.org/learn/introduction-virtual-reality. Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

• Course seminars

(For Agriculture Engineering & Allied branches)				
Choice Based Credit System (CBCS) and Outcome-Based Education (OBE) SEMESTER - IV				
Complex Analysis, Probability and Linear Programming				
Course Code 21MAT41 CIE Marks 50				
Teaching Hours/Week (L: T:P)	(2:2:0)	SEE Marks	50	
Credits 03 Exam Hours 03				

Course Learning Objectives:

• To provide an insight into applications of complex variables and conformal mapping arising in potential theory, quantum mechanics, heat conduction and field theory.

- To develop probability distribution of discrete, continuous random variables and joint probability distribution occurring in digital signal processing, design engineering and microwave engineering.
- Analyze and solve linear programming models of real-life situations and learn about the applications to transportation and assignment problems.

7. In addition to the traditional lecture method, different types of innovative teaching methods may	be
adopted so that the delivered lessons shall develop students' theoretical and applied mathematical skill	IS.
8. State the need for Mathematics with Engineering Studies and Provide real-life examples.	
9. Support and guide the students for self–study.	
10. You will also be responsible for assigning homework, grading assignments and quizzes, and documen students' progress.	ting
11. Encourage the students for group learning to improve their creative and analytical skills.	
Show short related video lectures in the following ways	
 As an introduction to new topics (pre-lecture activity). 	
 As a revision of topics (post-lecture activity). 	
 As additional examples (post-lecture activity). 	
 As an additional material of challenging topics (pre-and post-lecture activity). 	
As a model solution for some exercises (post-lecture activity).	
Module-1	
Calculus of complex functions: Analytic functions: Cauchy-Riemann equations in Cartesian and polar form	s and
consequences. Applications to flow problems	
Construction of analytic functions: Milne-Thomson method-Problems. (8 hours)	
Self-Study: Review of a function of a complex variable, limits, continuity, and differentiability.	
(RBT Levels: L1, L2 and L3)	
Pedagogy: Chalk and talk method and Powerpoint Presentations	
Module-2	
Conformal transformations: Introduction. Discussion of transformations	
$w = z^2$, $w = e^z$, $w = z + \frac{1}{z}$, $(z \neq 0)$. Bilinear transformations- Problems.	
Complex integration: Line integral of a complex function-Cauchy's theorem and Cauchy's integral formula ar	nd
problems. (8 hours)	
Self-Study: Residues, Residue theorem – problems	
(RBT Levels: L1, L2 and L3)	
Pedagogy: Chalk and talk method and Powerpoint Presentations	
Module-3	
Probability Distributions: Review of basic probability theory. Random variables (discrete and continuo	us),
probability mass/density functions. Mean-Variance and Standard Deviations of a random variable. Binom	nial,
Poisson, exponential and normal distributions- problems. (8 hours)	
Self-Study: Two-dimensional random variables, marginals pdf's, Independent random variables	
(RBT Levels: L1, L2 and L3)	
Pedagogy: Chark and tark method and Powerpoint Presentations	
Module-4	
Linear Programming Problems (L.P.P): General Linear programming Problem, Canonical and standard forms of	L.P.P.
Basic solution, Basic feasible solution, Optimal solution, Simplex Method-Problems. Artificial variables, I	3ig-M
method, Two-Phase method-Problems. (8 hours)	
Self-Study: Formulation of an L.P.P and optimal solution by Graphical Method.	
(RBT Levels: L1, L2 and L3)	
Pedagogy: Chalk and talk method and Powerpoint Presentations	

These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes.

Module-5

Teaching-Learning Process (General Instructions):

Transportation and Assignment Problems: Formulation of transportation problems, Methods of finding initial basic feasible solutions by North-West corner method, Least cost method, Vogel approximation method. Optimal solutions-Problems. Formulation of assignment problems, Hungarian method-Problems. (8 hours)

Self-Study: Degeneracy in Transportation problem.

(RBT Levels: L1, L2 and L3)

Pedagogy: Chalk and talk method and Powerpoint Presentations

Course outcomes: At the end of the course the student will be able to:

- Use the concepts of an analytic function and complex potentials to solve the problems arising in fluid flow.
- Utilize conformal transformation and complex integral arising in aerofoil theory, fluid flow visualization and image processing.
- Apply discrete and continuous probability distributions in analyzing the probability models arising in the engineering field.
- Analyze and solve linear programming models of real-life situations and solve LPP by the simplex method
- Learn techniques to solve Transportation and Assignment problems.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation:

Three Unit Tests each of 20 Marks (duration 01 hour)

First test at the end of 5th week of the semester

Second test at the end of the 10th week of the semester

Third test at the end of the 15th week of the semester

Two assignments each of **10 Marks**

First assignment at the end of 4th week of the semester

Second assignment at the end of 9th week of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for **20 Marks** (duration **01 hours**)

At the end of the 13th week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be scaled down to 50 marks

(to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (duration 03 hours)

The question paper will have ten questions. Each question is set for 20 marks.

There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 subquestions), **should have a mix of topics** under that module.

The students have to answer 5 full questions, selecting one full question from each module

Suggested Learning Resources:

Text Books:

- 3. B. S. Grewal: "Higher Engineering Mathematics", Khanna publishers, 44th Ed.2018
- 4. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed. (Reprint), 2016.
- 5. S.D. Sharma: "Operations Research" Kedarnath Publishers Ed. 2012

Reference Books

- 8. V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education,11th Ed.
- 9. Mokhtar S.Bazaraa, John J.Jarvis & Hanif D.Sherali(2010), *Linear Programming and Network Flows*(4th Edition), *John Wiley & sons.*
- 10. G.Hadley (2002) Linear Programming, Narosa Publishing House
- 11. F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010.
- 12. Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rdReprint, 2016.
- 13. N.P Bali and Manish Goyal: "A textbook of Engineering Mathematics" Laxmi Publications, Latest edition.
- 14. C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics" McGraw Hill Book Co. New York, Latest ed.

15. H.K. Dass and Er. RajnishVerma: "Higher EngineeringMathematics" S.ChandPublication (2014).

Web links and Video Lectures (e-Resources):

- http://.ac.in/courses.php?disciplineID=111
- <u>http://www.class-central.com/subject/math(MOOCs)</u>
- <u>https://www.coursera.org/learn/operations-research-modeling</u>
- <u>https://www.careers360.com/university/indian-institute-of-technology-madras/introduction-operations-research-certification-course</u>
- <u>http://people.whitman.edu/~hundledr/courses/M339.html</u>
- VTU e-Shikshana Program
- VTU EDUSAT Program

Activity-Based Learning (Suggested Activities in Class)/ Practical Based learning

- Quizzes
- Assignments
- Seminars

TRACTOR & AUTOMOTIVE ENGINES (IPCC)				
Course Code	21AG42	CIE Marks	50	
Teaching Hours/Week (L:T:P: S)	(3:0:2:0)	SEE Marks	50	
Total Hours of Pedagogy	40 hours Theory + 12 Lab slots	Total Marks	100	
Credits	04	Exam Hours	03	
Course Objectives:				

٠	The objective of this subject is to impart the knowledge of tractor engine components, working principles of IC
	engines, auxiliary systems, the combustion aspects of SI and CI engines in addition to the methods of improving
	performance.

- The students shall become aware on the latest developments in the field of IC engines like MPFI, CRDI etc. The student also shall apply the thermodynamic concepts in IC engines.
- Basic understanding of fuel properties and its measurements using various types of measuring devices
- Energy conversion principles, analysis and understanding of I C Engines will be discussed.
- Application of these concepts for these machines will be demonstrated. Performance analysis will be carried out using characteristic curves.
- Exhaust emissions of I C Engines will be measured and compared with the standards.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes.

- 1. Adopt different types of teaching methods to develop the outcomes through PowerPoint presentations and Video demonstrations or Simulations.
- 2. Chalk and Talk method for Problem Solving.
- 3. Arrange visits to show the live working models other than laboratory topics.
- 4. Adopt collaborative (Group Learning) Learning in the class.
- 5. Adopt Problem Based Learning (PBL), which fosters students Analytical skills and develops thinking skills such as evaluating, generalizing, and analyzing information.

Module-1

Study of sources of farm power - conventional & non-conventional energy sources. Classification of tractors and IC engines. Review of thermodynamic principles of IC (CI & SI) engines and deviation from ideal cycle. General energy equation and heat balance sheet. Study of mechanical, thermal and volumetric efficiencies. Study of engine components their construction, operating principles and functions. Study of engine strokes and comparison of 2-stroke and 4-stroke engine cycles and CI and SI engines.

Teaching-	1. PowerPoint Presentation
Learning	2. Chalk and Talk are used for Problem Solving (In-general)
Process	3. Video demonstration or Simulations

Module-2

Study of Engine Valve systems, valve mechanism, Valve timing diagram and valve clearance adjustment, Study of Cam profile, valve lift and valve opening area. Study of importance of air cleaning system. Study of types of air cleaners and performance characteristics of various air cleaners.

Teaching-	1. PowerPoint Presentation	
Learning Process 2. Chalk and Talk are used for Problem Solving (In-general)		
	3. Video demonstration or Simulations	
Module-3	8 HQ	URS

Module-3

Study of fuel supply system. Study of fuels, properties of fuels, calculation of air-fuel ratio. Study of tests on fuel for SI and CI engines. Study of detonation and knocking in IC engines. Study of carburetion system, carburetors and their main functional components.

Study of fuel injection system - Injection pump, their types, working principles. Fuel injector nozzles - their types and working principle. Engine governing – need of governors and governor types.

• ·		
Teaching-	1. PowerPoint Presentation	
Learning	2. Chalk and Talk are used for Problem Solving (In-general)	
Process	3. Video demonstration or Simulations	
Module-4 8 HOURS		
Study of lubrication system – need, types, functional components. Study of lubricants – physical properties, additives and		
their application. Engine cooling system – need, cooling methods and main functional components. Study of need and		
type of thermostat valves. Additives in the coolant. Study of radiator efficiency.		
Teaching-	1. PowerPoint Presentation	
Learning	2. Chalk and Talk are used for Problem Solving (In-general)	
Process	3. Video demonstration or Simulations	

8 HOURS

8 HOURS

Module-5	8 HOURS	
Study of ignition system of SI engines. Study of electrical system including battery, starting motor, battery charging, cut-		
out, etc. Comparison of dynamo and alternator. Familiarization with the basics of engine testing.		
Teaching-	1. PowerPoint Presentation	
Learning	2. Chalk and Talk are used for Problem Solving (In-general)	
Process	3. Video demonstration or Simulations	

PRACTICAL COMPONENT OF IPCC (May cover all / major modules)

SI.NO	Experiments		
1	Study of I.C. Engine parts and functions		
2	Study of Working principle of Four stroke and Two stroke cycle I.C. Engine		
3	Study of valve system and valve timing diagram		
4	Determination of engine power		
5	Study of Oil & Fuel system - determination of physical properties		
6	Study of Air cleaning system		
7	Study of Diesel injection system & timing		
8	Study of Cooling system		
9	Demonstration of working of governing system		
10	Demonstration of working of Lubricating system		
11	Demonstration of working of electrical and ignition system		
12	Determination of Tractor engine heat balance and engine performance curves		
13	Visit to engine manufacturer/ assembler/ spare parts agency. (Optional)		
Course	Course outcomes (Course Skill Set):		
At the e	nd of the course the student will be able to:		
٠	Understand, discuss and describe the fundamentals and working of IC engine		
•	Apply their knowledge and identify the working mechanism of different components of IC engine.		
•	Analyse the problems in using right amount of fuel and lubricants for better efficiency and economy		
•	Evaluate and understand the heat engine balance of engine for maintaining at right temperature for different		
	type of work		

- Apply and understand ignition system and problems faced during starting of ignition system
- Apply and understand governing system and problems faced during running of governing system
- Perform experiments to determine the properties of fuels and oils.
- Conduct experiments on engines and draw characteristics.
- Test basic performance parameters of I.C. Engine and implement the knowledge in industry
- Identify exhaust emission, factors affecting them and exhibit his competency towards preventive maintenance of IC Engine

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

CIE for the theory component of IPCC

Two Tests each of 20 Marks (duration 01 hour)

- First test at the end of 5th week of the semester
- Second test at the end of the 10th week of the semester

Two assignments each of **10 Marks**

• First assignment at the end of 4th week of the semester

• Second assignment at the end of 9th week of the semester

Scaled-down marks of two tests and two assignments added will be CIE marks for the theory component of IPCC for **30** marks.

CIE for the practical component of IPCC

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The**15 marks** are for conducting the experiment and preparation of the laboratory record, the other **05 marks shall be for the test** conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to 15 marks.
- The laboratory test (duration 03 hours) at the end of the 15th week of the semester /after completion of all the experiments (whichever is early) shall be conducted for 50 marks and scaled down to 05 marks.

Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **20 marks**.

SEE for IPCC

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours)

The question paper will have ten questions. Each question is set for 20 marks.

- 5. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 subquestions), **should have a mix of topics** under that module.
- 6. The students have to answer 5 full questions, selecting one full question from each module.

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper shall include questions from the practical component).

- The minimum marks to be secured in CIE to appear for SEE shall be the 12 (40% of maximum marks-30) in the theory component and 08 (40% of maximum marks -20) in the practical component. The laboratory component of the IPCC shall be for CIE only. However, in SEE, the questions from the laboratory component shall be included. The maximum of 04/05 questions to be set from the practical component of IPCC, the total marks of all questions should not be more than the 20 marks.
- SEE will be conducted for 100 marks and students shall secure 35% of the maximum marks to qualify in the SEE. Marks secured will be scaled down to 50.

Suggested Learning Resources:

Books

- 10. Donnel Hunt. Farm Power Machinery and management. Iowa State University Press, Ames, USA.
- 11. Gill Paul, W., Smith James, H., and Ziurys Eugene, J. (1967). Fundamentals of Internal Combustion Engines. Oxford & IBE Publishing Company, New Delhi.
- 12. Gupta, R.B., and Gupta, B.K. (1987). Tractor Mechanic, Theory, Maintenance and Repair. Sathya Prakashan and Tech India Publications, New Delhi.
- 13. Jain, S.C., and Rai, C.R. (1984). Farm Tractor Maintenance and Repair. Tata Mc Graw- Hill Publishing Company Ltd, New Delhi.
- 14. Liljedahl John, B., Casleton Walter, M., Turnquist Paul, K., and Smith David, W. (1951). Tractors and Their Power Units, . John Wiley & Sons, New-York.
- 15. Mathur, M.L., and Sharma, R.P. (1994). A Course in Internal Combustion Engines. Danpat Rai & Sons, Delhi.
- 16. Gill Paul, W., Smith James, H., and Ziurys Eugene, J. (1967). Fundamentals of Internal Combustion Engines. Oxford & IBE Publishing Company, New Delhi.
- 17. Gupta, R.B., and Gupta, B.K. (1987). Tractor Mechanic, Theory, Maintenance and Repair. Sathya Prakashan and Tech India Publications, New Delhi.
- 18. Jain, S.C., and Rai, C.R. (1984). Farm Tractor Maintenance and Repair. Tata Mc Graw- Hill Publishing Company Ltd, New Delhi.

- 20. Nakra C.P., 2009. Farm Machines and Equipments. Dhanpat Rai Publishers, New Delhi
- 21. Jain SC and CR Rai., 2008. Farm Tractor Maintenance and Repair. Standard Publishers, New Delhi
- 22. Neil Southorn, Tractors, 1995. Operation, Performance and Maintenance, Inkata Press Australia.

Web links and Video Lectures (e-Resources):

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Quizzes
- Assignments
- Seminars
- Mini Projects

AGRICULTURAL PROCESS ENGINEERING (IPCC)			
Course Code	21AG43	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	(3:0:2:0)	SEE Marks	50
Total Hours of Pedagogy	40 hours Theory + 12 Lab slots	Total Marks	100
Credits	04	Exam Hours	03

Course Objectives:					
• Tot	• To train the students on unit operations of agricultural process engineering				
• To a	 To acquaint with the engineering properties of agricultural materials 				
• Enal	• Enable the students to understand the concepts of cleaning of cereals, size reduction and rice milling				
Teaching-Lea	rning Process (General Instructions)				
These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcome					
1. Adopt different types of teaching methods to develop the outcomes through PowerPoint presen					
	eo demonstrations of Simulations.				
2. Cha	ik and Taik method for Problem Solving.				
3. All	ange visits to show the live working models other than laboratory topics.				
4. Aut	pt conaborative (Group Learning) Learning in the class.				
5. Aut	pt Problem Based Learning (PBL), which rosters students Analytical skins and develops thinking skins such as				
Eva 6 Cor	dust Laboratory Demonstrations and Practical Experiments to enhance experiential skills				
0. Cor	duct Laboratory Demonstrations and Practical Experiments to enhance experiential skins.				
Niodule-1	8 NUURS				
Physical char	acteristics of different food grains: muits and vegetables – importance, snape and size – criteria for				
describing sh	ape and size, Roundness and sphericity – volume and density – specific gravity – Bulk density Porosity –				
Surface area.	havis concents ASTM standard definition of terms. Pheelogical Dreparties - Force deformation helpsvior				
Kileology -	train behavior. Visco electicity time effects. Existing basic concents effect of load sliding velocity				
Stress and s	medels. Kalvin and Maxwell medels, electrical equivalence of mechanical medels. Becalegical equations				
Gonoralized	Maxwell and Kolvin models, electrical equivalence of mechanical models, kneological equations –				
Generalizeu	1 PowerPoint Procentation				
Learning	1. PowerPoint Presentation				
Brocoss	2. Video domonstration or Simulations				
FIDCESS	A Laboratory Demonstrations and Bractical Experiments				
Madula 2					
iviodule-2	8 HOURS				
Frictional Pro	perties: Friction in agricultural materials – measurement – rolling resistance – angle of internal friction and				
angle of repo	se, Aerodynamics of agricultural products – drag coefficient – frictional drag and profit drag or pressure				
drag and terr	ninal velocity.				
Electrical pro	f engineering properties in handling and processing equipment and also storage structures				
	rengineering properties in nandling and processing equipment and also storage structures.				
Teaching-	1. PowerPoint Presentation				
Learning Pro	2. Chalk and Talk are used for Problem Solving (In-general)				
	3. Video demonstration or Simulations				
	4. Laboratory Demonstrations and Practical Experiments				
Module-3	8 HOURS				
Theory of se	paration: Types of separators, Cyclone separators, Size of screens applications, Separator based on length,				
width and	shape of the grains, specific gravity, density, Air-screen grain cleaner principle and types, Design				
consideratio	ns of air screen grain cleaners, Sieve analysis-particle size determination, Ideal screen and actual screen-				
enectiveness of separation and related problems, Pneumatic separator, Cleaning and separation equipment's.					
Learning-					
Learning 2. Chaik and Taik are used for Problem Solving (In-general)					
Process	3. Video demonstration or Simulations				
N41 1 - 4	4. Laboratory Demonstrations and Practical Experiments				
Woulderse 8 HOURS Come and immediate of even messaging. Detectors and methods of food 1					
Scope and in	iportance of crop processing: Principles and methods of food processing- cleaning and grading of cereals,				
Size reductio	h -principle of comminution/ size reduction, mechanisms of comminution of food, particle snape, average				
particle size,	characteristics of comminuted products, crusning efficiency, Determination and designation of the fineness				
of ground material, screen analysis, Empirical relationships (Rittinger_s, Kick_s and Bond_s equations), Work index, energy					

utilization, Methods of operating crushers, Classification based on particle size, Nature of the material to be crushed, Size reduction equipment – Principal types, crushers (jaw crushers, gyratory, smooth roll), Hammer mills, Attrition mills, Burr mill, Tumbling mills, Action in tumbling mills, Size reduction equipment –Ultra fine grinders (classification hammer mills, colloid mill), Cutting machines (slicing, dicing, shredding, pulping), Energy requirement of size deduction

Teaching-	1. PowerPoint Presentation	
Learning	2. Chalk and Talk are used for Problem Solving (In-general)	
Process 3. Video demonstration or Simulations		
	4. Laboratory Demonstrations and Practical Experiments	

Module-5

Rice milling: Principles and equipments, Paddy parboiling methods and equipment, Wheat milling, Milling of Pulses and Oilseeds, Theory of filtration, Rate of filtration, Pressure drop during filtration, Applications, Constant rate filtration and Constant-pressure filtration derivation of equation, Filtration equipment, Plate and frame filter press, Rotary filters, Centrifugal filters and Air filters

0	
Teaching-	1. PowerPoint Presentation
Learning	2. Chalk and Talk are used for Problem Solving (In-general)
Process 3. Video demonstration or Simulations	
	4. Laboratory Demonstrations and Practical Experiments

PRACTICAL COMPONENT OF IPCC (May cover all / major modules)

SI.NO	Experiments		
1	Preparation of flow charts and layout of a food processing plant		
2	Mixing index and study of mixers		
3	Determination of fineness modulus and uniformity index		
4	Determination of mixing index of a feed mixer		
5	Determination of the efficiency of cyclone separator		
6	Tutorial on extraction by McCabe and Thiele plot		
7	Tutorial on use of psychometric chart		
8	Tutorial Problems on distillation		
9	Tutorial on power requirement in size reduction of grain using Ratzinger's law, Kicks law and Bond's law		
10	Performance evaluation of hammer mill and attribution mill.		
11	Separation behaviour in pneumatic separation		
12	Evaluation of performance of indented cylinder		
Course	Course outcomes (Course Skill Set):		

e outcomes (Course Skill Set)

At the end of the course the student will be able to:

- Be proficient in the scope of the process engineering and the use of processing machinery
- Understand the physical properties, rheological properties and frictional properties of agricultural materials
- Summarising the thermal properties, electrical properties and the terms related to the machine design aspects
- Some of the basic concepts related to cleaning and size reduction equipments
- To acquaint the students with the milling of rice, parboiling technologies and milling of pulses and oil seeds
- Understand the filtration equipments

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

CIE for the theory component of IPCC

Two Tests each of 20 Marks (duration 01 hour)

- First test at the end of 5th week of the semester
- Second test at the end of the 10th week of the semester

8 HOURS

Two assignments each of 10 Marks

- First assignment at the end of 4th week of the semester
- Second assignment at the end of 9th week of the semester

Scaled-down marks of two tests and two assignments added will be CIE marks for the theory component of IPCC for **30** marks.

CIE for the practical component of IPCC

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The**15 marks** are for conducting the experiment and preparation of the laboratory record, the other **05 marks shall be for the test** conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to 15 marks.
- The laboratory test (duration 03 hours) at the end of the 15th week of the semester /after completion of all the experiments (whichever is early) shall be conducted for 50 marks and scaled down to 05 marks.

Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **20 marks**.

SEE for IPCC

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours)

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 subquestions), **should have a mix of topics** under that module.
- 3. The students have to answer 5 full questions, selecting one full question from each module.

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper shall include questions from the practical component).

- The minimum marks to be secured in CIE to appear for SEE shall be the 12 (40% of maximum marks-30) in the theory component and 08 (40% of maximum marks -20) in the practical component. The laboratory component of the IPCC shall be for CIE only. However, in SEE, the questions from the laboratory component shall be included. The maximum of 04/05 questions to be set from the practical component of IPCC, the total marks of all questions should not be more than the 20 marks.
- SEE will be conducted for 100 marks and students shall secure 35% of the maximum marks to qualify in the SEE. Marks secured will be scaled down to 50.

Suggested Learning Resources:

Books

- 1. Post Harvest Technology of Cereals, Pulses and oil seeds, Chakraverty A 1988. Oxford and IBH Publishing Co. Ltd., Calcutta.
- 2. Unit Operations of Agricultural Processing, Sahay KM and Singh KK 1994, Vikas Publishing House Pvt. Ltd., New Delhi
- 3. Unit Operations of Chemical Engineering, McCabe WL, Smith JC and Harriott P 2017 McGraw-Hill Book Co., Boston.
- 4. Transport Processes and separation Process Principle, Geankoplis C J 2015 Prentice-Hall Inc., New Jersey.
- 5. Unit operations in Food processing, Earle R L 1983. Pergamon Press, New York
- 6. file:///C:/Users/DELL/Downloads/AlabmanualonAgriculturalProcessingandStructures.pdf
- 7. Post Harvest Technology of Cereals, Pulses and oil seeds, Chakraverty A 1988. Oxford and IBH Publishing Co. Ltd., Calcutta.
- 8. Unit Operations of Agricultural Processing, Sahay KM and Singh KK 1994, Vikas Publishing House Pvt. Ltd., New Delhi.

Web links and Video Lectures (e-Resources):

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Quizzes
- Assignments
- Seminars
- Mini Projects

THERMODYNAMICS & FLUID MECHANICS			
Course Code	21AG43	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:0:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	03

Course Learning objectives:

The course will enable the students to

- Acquire a basic understanding of properties of fluids and the measurement of pressure and fluid kinematics.
- Acquire a basic understanding of fundamentals fluid dynamics, and Benoulli's equation and flow meters.
- Acquire the basic concepts of flow through pipes and losses in pipe flows.
- Understand the basic concepts of flow over bodies and usefulness of dimensionless analysis.
- Acquire the fundamentals of compressible flow and the basic knowledge of working of CFD packages.
- Acquire the knowledge of simple fluid mechanics experimental setups and carry out the necessary analysis of these experiments
- Acquire knowledge experimental errors and the ability to estimate the experimental uncertainties.

Teaching-Learning Process (General Instructions)

These are sample Strategies; which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Adopt different type of teaching methods to develop the outcomes through Power-Point Presentation and Video demonstration or Simulations.
- 2. Chalk and Talk method for Problem Solving.
- 3. Arrange visits to show the live working models other than laboratory topics.
- 4. Adopt collaborative (Group Learning) Learning in the class.
- 5. Adopt Problem Based Learning (PBL), which fosters students Analytical skills, develop thinking skills such as the ability to evaluate, generalize, and analyze information.
- 6. Conduct Laboratory Demonstrations and Practical Experiments to enhance experiential skills.

MODULE-1

Basic Concepts: Definitions of system, boundary, surrounding control volume. Types of thermodynamic systems, Properties of system, definitions for properties like pressure, volume, temperature, enthalpy, internal energy, density, with their units. State, Property, Process and Cycle, Quasi Static Process, Thermodynamic Equilibrium. Work & Heat Transfer: Work transfer, Types of work transfers, Point and Path Functions, Heat transfer, Comparison of Work and Heat transfers. Zeroth Law of Thermodynamics: Zeroth Law of Thermodynamics. Heat and temperature - concept of thermal equilibrium Power-point Presentation, **Teaching-**1. Learning 2. Video demonstration or Simulations, Process 3. Chalk and Talk are used for Problem Solving. Laboratory Demonstrations and Practical Experiments 4. **MODULE-2** First Law of Thermodynamics: First law of thermodynamics- simple problems on heat and work conversions in process and cycle. Non flow energy equation (NFEE). Limitations of First law of thermodynamics. Second Law of Thermodynamics: Heat Engine, Statements of Second law and their equivalence, Refrigeration and Heat Pump, Reversibility and Irreversibility, availability and unavailability – concept of change in entropy. The second stress of 4

reaching-	1.	Power-point Presentation,
Learning Process	2.	Video demonstration or Simulations,
	3.	Chalk and Talk are used for Problem Solving.
	4.	Laboratory Demonstrations and Practical Experiments

MODULE-3

Introduction: Definition and properties, types of fluids, pressure at a point in static fluid, variation of pressure, Pascals Law, (To be reviewed in class but not for examination)

Pressure- absolute, gauge, vacuum, pressure measurement by manometers and gauges, hydrostatic pressure on plane submerged bodies. Buoyance and metacentre, Stability of submerged bodies

Fluid Kinematics: Velocity of fluid particle, types of fluid flow, streamlines, pathlines and streaklines continuity equation, acceleration of fluid particle, strain rate, vorticity, stream function, potential function, Circulation, Reynolds transport theorem.

Fluid Dynamics: Introduction, Forces acting on fluid in motion, Linear momentum equation, Impact of jets, Moment of momentum equation, Euler's equation of motion along a streamline, Bernoulli's equation – assumptions and limitations. Introduction to Navier Stokes equation, Venturimenters, orificemeters, rectangular and triangular notches, pitot tubes, Rota meter, electromagnetic flow meter **Teaching-**1. Power-point Presentation, Learning 2. Video demonstration or Simulations. Process 3. Chalk and Talk are used for Problem Solving. 4. Laboratory Demonstrations and Practical Experiments **MODULE-4** Laminar and Turbulent flow: Flow through circular pipe, between parallel plates, Power absorbed in viscous flow in bearings, Poiseuille equation Loss of head due to friction in pipes, Major and minor losses, pipes in series and parallel. Flow over bodies: Development of boundary layer, Lift and Drag, Flow around circular cylinders, spheres, aerofoils and flat plates, Streamlined and bluff bodies, boundary layer separation and its control. **Teaching-**1. Power-point Presentation, 2. Learning Video demonstration or Simulations, Process 3. Chalk and Talk are used for Problem Solving. 4. Laboratory Demonstrations and Practical Experiments **MODULE 5** Dimensional Analysis: Derived quantities, dimensions of physical quantities, dimensional homogeneity, Rayleigh method, Buckingham Pi-theorem, dimensionless numbers, similitude, types of similitude.Compressible flows: Speed of sound, adiabatic and isentropic steady flow, Isentropic flow with area change stagnation and sonic properties, normal and oblique shocks, flow through nozzles. Introduction to CFD: Necessity, limitations, philosophy behind CFD, applications **Teaching-**1. Power-point Presentation, Learning 2. Video demonstration or Simulations, Process 3. Chalk and Talk are used for Problem Solving. 4. Laboratory Demonstrations and Practical Experiments

Course outcomes (Course Skill Set):

At the end of the course the student will be able to:

- Understand the basic principles of fluid mechanics and fluid kinematics
- Acquire the basic knowledge of fluid dynamics and flow measuring instruments
- Understand the nature of flow and flow over bodies and the dimensionless analysis
- Acquire the compressible flow fundamental and basics of CFD packages and the need for CFD analysis.
- Conduct basic experiments of fluid mechanics and understand the experimental uncertainties.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

Three Unit Tests each of 20 Marks (duration 01 hour)

- 7. First test at the end of 5th week of the semester
- 8. Second test at the end of the 10th week of the semester
- 9. Third test at the end of the 15th week of the semester

Two assignments each of 10 Marks

- 10. First assignment at the end of 4th week of the semester
- 11. Second assignment at the end of 9th week of the semester

Group discussion/Seminar/guiz any one of three suitably planned to attain the COs and POs for 20 Marks (duration 01
hours)
12. At the end of the 13 th week of the semester
The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be scaled
down to 50 marks
(to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the
CIE. Each method of CIE should have a different syllabus portion of the course).
CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined
for the course.
Semester End Examination:
Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject
(duration 03 hours)
3. The question paper will have ten questions. Each question is set for 20 marks.
4. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-
questions), should have a mix of topics under that module.
The students have to answer 5 full questions, selecting one full question from each module.
Suggested Learning Resources:
Reference Books
1 Fox R W Pitchard P L and McDonald A T (2010) Introduction to Eluid Mechanics 7thEdition John Wiley & Sons
2 Cimbala I.M. Cengel Y.A. (2010) Eluid Mechanics: Fundamentals and Applications. McGraw-Hill
3. Frank M White., (2016), Fluid Mechanics, 8thEdition, McGraw-Hill
Additional References:
1. A text book of Fluid Mechanics and Hydraulic Machines, Dr. R K Bansal, Laxmi publishers
2. Fundamentals of Fluid Mechanics, Munson, Young, Okiishi & Hebsch, John Wiley Publicationss, 7th Edition
Web links and Video Lectures (e-Resources):
1. https://nptel.ac.in/noc/courses/noc20/SEM1/noc20-me22/
https://ocw.mit.edu/search/ocwsearch.htm?q=fluid%20mechanics
https://directory.doabooks.org/discover?query=Fluid+Mechanics&locale-attribute=en
4. http://elearning.vtu.ac.in/econtent/courses/video/CV/10CV35.html
Activity Based Learning (Suggested Activities in Class)/ Practical Based learning
• Quizzes
Assignments

- ٠
- Seminars •

	MACHINE DRAWING AND GD & T				
Course Code	21AGL46	CIE Marks	50		
Teaching Hours/Week (L:T:P: S)	0:0:2*:0	SEE Marks	50		
Credits	01	Exam Hours	03		
* One additional hour may be considered v	wherever required				
Course objectives:					
• To acquire the knowledge of limit	ts, tolerance and fits and indicate them	on machine drawings	5.		
 To make drawings using orthogra 	phic projections and sectional views				
• To impart knowledge of thread for	orms, fasteners, keys, joints, couplings a	and clutches.			
• To understand and interpret dray	vings of machine components leading t	o preparation of asse	mbly drawings		
manually and using CAD package	s.		, , , , , , , , , , , , , , , , , , ,		
, , , , , , , , , , , , , , , , , , ,	1 (only for CIF)	01 Sessions			
Review of basic concents of Engineering Vi	sualization	02 0000000			
Geometrical Dimensioning and Tolerance	(GD&T): Introduction Fundamental to	olerances Deviations	Methods of		
placing limit dimensions machining symbol	is types of fits with symbols and applic	rations geometrical to	olerances on		
drawings. Standards followed in industry.		ations, geomethear a			
Module	2 (only for CIE)	02 Sessions			
Sections of Simple and hollow solids: True	shape of sections.				
P					
Module	3 (only for CIE)	03 Sessions			
Thread Forms: Thread terminology, section	nal views of threads. ISO Metric (Intern	al & External), BSW (I	nternal &		
External) square and Acme. Sellers thread,	American Standard thread, Helicoil thr	ead inserts			
Fasteners: Hexagonal headed bolt and nut	with washer (assembly), square heade	d bolt and nut with w	asher (assembly),		
simple assembly using stud bolts with nut	and lock nut. Flanged nut, slotted nut, t	aper and split pin for	locking,		
countersunk head screw, grub screw, Aller	screw				
Rivets					
Keys: Parallel key, Taper key, Feather key,	Gib-head key and Woodruff key.				
Module	4	03 Sessions			
Assembly of Joints, couplings and clutches	s (with GD&T) using 2D environment				
Joints: Like Cotter joint (socket and spigot)	, knuckle joint (pin joint).				
Couplings: Like flanged coupling, universal	coupling				
Clutches: Like Single Plate clutch, cone clut	ches				
Module	5	05 Sessions			
Assembly of Machine Components (with (GD&T) using 3D environment				
(Part drawings shall be given)					
1. Bearings					
2. Valves					
3. Safety Valves					
4. I.C. Engine components					
5. Lifting devices					
6 Machine tool components					
o. Machine tool components					
7. Pumps					

Course outcomes (Course Skill Set):

At the end of the course the student will be able to:

CO1: Interpret the Machining and surface finish symbols on the component drawings.

CO2: Apply limits and tolerances to assemblies and choose appropriate fits for given assemblies.

CO3: Illustrate various machine components through drawings

CO4: Create assembly drawings as per the conventions.

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks) and that for SEE minimum passing mark is 35% of the maximum marks (18 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation (CIE):

CIE marks for the practical course is 50 Marks.

- CIE shall be evaluated for max marks 100. Marks obtained shall be accounted for CIE final marks, reducing it by 50%.
- CIE component should comprise of
 - o Continuous evaluation of Drawing work of students as and when the Modules are covered.
 - At least one closed book **Test** covering all the modules on the basis of below detailed weightage.
 - Weightage for Test and Continuous evaluation shall be suitably decided by respective course coordinators.

Module	Max. Marks	Evaluation Weightage in marks		
	weigntage	Computer display & printout	Preparatory sketching	
Module 1	10	05	05	
Module 2	15	10	05	
Module 3	25	20	05	
Module 4	25	20	05	
Module 5	25	25	00	
Total	100	80	20	

Semester End Evaluation (SEE):

SEE marks for the practical course is 50 Marks.

- The duration of SEE is 03 hours. Questions shall be set worth of 3 hours
- SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the University.
- SEE shall be conducted and evaluated for maximum marks 100. Marks obtained shall be accounted for SEE final marks, reducing it to 50 marks.
- Question paper shall be set jointly by both examiners and made available for each batch as per schedule. Questions are to be set preferably from Text Books.
- Evaluation shall be carried jointly by both the examiners.
- Scheme of Evaluation: To be defined by the examiners jointly and the same shall be submitted to the university along with question paper.

• One full question shall be set from Modules 3 and 4 as per the below tabled weightage details. *However, the student may be awarded full marks, if he/she completes solution on computer display without sketch*.

Module	Max. Marks	Evaluation Weightage i	Evaluation Weightage in marks		
	Weightage	Computer display & printout	Preparatory sketching		
Module 4	40	30	10		
Module 5	60	50	10		
Total	100	80	20		

Suggested Learning Resources:

Books:

- K L Narayana, P Kannaiah, K Venkata Reddy, "Machine Drawing", New Age International, 3rd Edition. ISBN-13: 978-81-224-2518-5, 2006
- N D Bhatt , "Machine Drawing", Charotar Publishing House Pvt. Ltd., 50th Edition, ISBN-13: 978-9385039232, 2014

Reference Books:

- <u>Sadhu S</u>ingh, <u>P. L. Sah, "Fundamentals of Machine Drawing"</u>, PHI Learning Pvt. Ltd, 2nd Edition, ISBN: 9788120346796, 2012
- Ajeet Singh, "MACHINE DRAWING", Tata McGraw-Hill Education, , ISBN: 9781259084607, 2012

INTRODUCTION TO INTERNET OF THINGS (AEC-IV)				
Course Code	21AG481	CIE Marks	50	
Teaching Hours/Week (L:T:P: S)	(0:2:0:0)	SEE Marks	50	
Total Hours of Pedagogy	25	Total Marks	100	
Credits	01	Exam Hours	02	

Course Objectives:

- To understand the basics of Internet of things
- To design IoT applications in different domain and be able to analyze their performance.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes.

- 1. Adopt different types of teaching methods to develop the outcomes through PowerPoint presentations and Video demonstrations or Simulations.
- 2. Chalk and Talk method for Problem Solving.
- 3. Arrange visits to show the live working models other than laboratory topics.
- 4. Adopt collaborative (Group Learning) Learning in the class.
- 5. Adopt Problem Based Learning (PBL), which fosters students Analytical skills and develops thinking skills such as evaluating, generalizing, and analyzing information.
- 6. Conduct Laboratory Demonstrations and Practical Experiments to enhance experiential skills.

Module-1

Overview of IOT : Introduction to IoT, Defining IoT, Characteristics of IoT, Genesis of IoT, IoT and Digitization, IoT Impact, Convergence of IT and IoT, IoT Challenges, Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs

Introduction to IOT Network Architecture : IoT Network Architecture and Design, Drivers Behind New Network Architectures, Comparing IoT Architectures, A Simplified IoT Architecture

Teaching-	1. PowerPoint Presentation			
Learning	2. Chalk and Talk are used for Problem Solving (In-general)			
Process	3. Video demonstration or Simulations			
	4. Laboratory Demonstrations and Practical Experiments			
	Module-2			
Telemetry : IoT	& M2M Machine to Machine, Difference between IoT and M2M, Software define Network			
Smart Objects	: The "Things" in IoT, Sensors, Actuators, and Smart Objects, Sensor Networks, Connecting Smart			
Ohiects Comm	inications Criteria, IoT Access Technologies			
Teaching-	1. PowerPoint Presentation			
Learning Proces	2. Chalk and Talk are used for Problem Solving (In-general)			
	3. Video demonstration or Simulations			
	4. Laboratory Demonstrations and Practical Experiments			
Module-3				
IOT Network Protocols: IP as the IoT Network Layer, The Business Case for IP, The need for Optimization, Optimizing IP				
for IoT, Profiles and Compliances, Application Protocols for IoT, The Transport Layer, IoT Application Transport Methods.				
Teaching-	1. PowerPoint Presentation			
Learning Proces	s 2. Chalk and Talk are used for Problem Solving (In-general)			

	3. Video demonstration or Simulations				
	4. Laboratory Demonstrations and Practical Experiments				
	Module-4				
Security in IO	T : Securing IoT, A Brief History of OT Security, Common Challenges in OT Security, How IOT and OT Security				
Practices and	Systems Vary, Formal Risk Analysis Structures: OCTAVE and FAIR, The Phased Application of Security in an				
Operational E	nvironment				
Teaching-	1. PowerPoint Presentation				
Learning	2. Chalk and Talk are used for Problem Solving (In-general)				
Process	3. Video demonstration or Simulations				
	4. Laboratory Demonstrations and Practical Experiments				
	Module-5				
IoT Physical I	Devices and Endpoints: Arduino UNO: Introduction to Arduino, Arduino UNO, Installing the Software,				
Fundamentals	of Arduino Programming. IoT Physical Devices and Endpoints - Raspberry-Pi: Introduction to Raspberry-Pi,				
About the R	aspberry-Pi Board: Hardware Layout, Operating Systems on Raspberry-Pi, Configuring Raspberry-Pi,				
Programming	Raspberry-Pi with Python, Wireless Temperature Monitoring System Using Pi, DS18B20 Temperature				
Sensor, Conne	cting Raspberry Pi via SSH, Accessing Temperature from DS18B20 sensors, Remote access to Raspberry-Pi				
Teaching-	1. PowerPoint Presentation				
Learning	2. Chalk and Talk are used for Problem Solving (In-general)				
Process	3. Video demonstration or Simulations				
	4. Laboratory Demonstrations and Practical Experiments				
Course outcome (Course Skill Set)					
At the end of	the course the student will be able to :				
1.	Explain the concepts of Internet of Things and network Architecture				
2.	Compare and contrast the deployment of smart objects and the technologies to connect them to network.				
3.	Analyze basic protocols in wireless sensor network				
4.	Elaborate the need of Security in IOT				
5.	Design IOT applications in different domain and be able to analyse their performance				

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous internal Examination (CIE)

Three Tests (preferably in MCQ pattern with 20 questions) each of **20 Marks (duration 01 hour**)

- 4. First test at the end of 5th week of the semester
- 5. Second test at the end of the 10th week of the semester
- 6. Third test at the end of the 15th week of the semester

Two assignments each of **10 Marks**

- 3. First assignment at the end of 4th week of the semester
- 4. Second assignment at the end of 9th week of the semester

Quiz/Group discussion/Seminar, any two of three suitably planned to attain the COs and POs for **20 Marks** (duration 01 hours)

The sum of total marks of three tests, two assignments, and quiz /seminar/ group discussion will be out of 100 marks and shall be scaled down to 50 marks

Semester End Examinations (SEE)

SEE paper shall be set for 50 questions, each of 01 mark. The pattern of the question paper is MCQ (multiple choice questions). The time allotted for SEE is **01 hour.** The student has to secure minimum of 35% of the maximum marks meant for SEE.

Suggested Learning Resources:

Books

1. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry,"IoT Fundamentals:

Networking Technologies, Protocols, and Use Cases for the Internet of Things", 1 Edition, Pearson Education (Cisco Press Indian Reprint). (ISBN: 978-9386873743)

- 2. Vijay Madisetti, Arshdeep Bahga, "Internet of Things: A Hands-On Approach"
- Raj Kamal, "Internet of Things: Architecture and Design Principles", 1stEdition, McGraw Hill Education, 2017. (ISBN: 978-9352605224)
- 4. Srinivasa K G, "Internet of Things", CENGAGE Leaning India, 2017

Web links and Video Lectures (e-Resources):

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Quizzes
- Assignments
- Seminars

	HUN	IAN ENGINEERING AND SAFETY (AEC-IV)		
Course Code		21AG482	CIE Marks	50	
Teaching Hours	/Week (L:T:P: S)	(1:0:0:0)	SEE Marks	50	
Total Hours of	Pedagogy	15	Total Marks	100	
Credits	0.07	01	Exam Hours	01	
Course Objecti	ves:				
 To acc 	uaint and equip with the e	rgonomic aspects in the design o	of farm machinery and equ	uipment and safety	
aspect	s of human subjects.				
Teaching-Learn	ing Process (General Instru	ictions)			
Inese are samp	t different turnes of teacher	rs can use to accelerate the attain	iment of the various cours	e outcomes.	
I. Adop	domonstrations or Simulat	ig methods to develop the outco	omes through PowerPoint	presentations and	
2 Chalk	and Talk mothod for Broble	ions.			
2. Clidik	and talk method for Propie	en solving.	anutanica		
3. Arran	ge visits to show the live w	bing) Learning in the class	bry topics.		
4. Adop	t Collaborative (Group Learning /	(ing) Learning in the class.	tical skills and dayslans th	inking skills such as	
5. Adop	t Problem Based Learning (I	BL), which losters students Analy	rical skills and develops th	Inking skills such as	
evalu 6 Condu	ust Laboratory Domonstrati	ans and Drastical Experiments to	onhanco ovnoriontial skills		
6. Cond			ennance experiential skills		
Human factor	s. Human factors in system	development – concent of system	ms Basic processes in syst	em develonment	
performance r	eliability human performa	nce Information input process		em development,	
T h in -					
Teaching-	1. PowerPoint Presentatio	on I fan Drahlam Calving (In. canaral)			
Learning	2. Chaik and Taik are used for Problem Solving (In-general)				
Process 3. Video demonstration or Simulations					
	4. Laboratory Demonstrations and Practical Experiments				
Displays: Visua	displays major types and	use of displays auditory and tact	ial displays Speech comm	inications	
			an displays. Speech comm		
Teaching-	1. PowerPoint Present	ation			
Learning Proce	ss 2. Chalk and Talk are u	sed for Problem Solving (In-gener	al)		
	3. Video demonstratio	n or Simulations			
	4. Laboratory Demons	trations and Practical Experiment	S		
		Module-3			
Biomechanics	: Biomechanics of motion, t	/pes of movements, Range of mov	rements, strength and endu	arance, speed and	
accuracy, hum	an control of systems. Hum	an motor activities, controls, too	ls and related devices.		
Teaching-	1. PowerPoint Presentation	on .			
Learning	2. Chalk and Talk are used	for Problem Solving (In-general)			
Process	3. Video demonstration o	r Simulations			
4. Laboratory Demonstrations and Practical Experiments					
Module-4					
Anthropometry and Atmospheric conditions : Anthropometry - arrangement and utilization of work space, atmospheric					
conditions, hea	t exchange process and per	tormance, air pollution.			
Teaching-	1. PowerPoint Presentation				
Learning	2. Chalk and Talk are used	tor Problem Solving (In-general)			
Process	Process 3. Video demonstration or Simulations				
	4. Laboratory Demonstrat	ions and Practical Experiments			
Module-5					

Safety regula	tions: Dangerous machine (Regulation) act, Rehabilitation and compensation to accident victims, Safety
gadgets for sp	raying, threshing, Chaff cutting, Power tiller and tractor & trailer operation etc.
Taashing	1 DeverDaint Procentation
Teaching-	1. PowerPoint Presentation
Learning	2. Chark and Tark are used for Problem Solving (In-general)
Process	3. Video demonstration or simulations
	4. Laboratory Demonstrations and Practical Experiments
Course outco	me (Course Skill Set)
At the end of	the course the student will be able to :
I. Equip	b with the ergonomic aspects in the design of farm machinery and equipment
2. Equip	b with the safety aspects of human subjects.
Assessment D	letails (both CIE and SEE)
The weightag	e of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum
passing mark	for the CIE is 40% of the maximum marks (20 marks out of 50). A student shall be deemed to have satisfied
the academic	requirements and earned the credits allotted to each subject/ course if the student secures not less than
35% (18 Mari	cs out of 50)in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum
total of the Cl	E (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together
Continuous in	ternal Examination (CIE)
Three Tests (p	preferably in MCQ pattern with 20 questions) each of 20 Marks (duration 01 hour)
1. First	test at the end of 5 th week of the semester
2. Seco	nd test at the end of the 10 th week of the semester
3. Third	test at the end of the 15 th week of the semester
Two assignme	ents each of 10 Marks
1. First	assignment at the end of 4 th week of the semester
2. Seco	nd assignment at the end of 9 th week of the semester
Quiz/Group di	iscussion/Seminar, any two of three suitably planned to attain the COs and POs for 20 Marks (duration 01
hours)	
The sum of to	tal marks of three tests, two assignments, and quiz /seminar/ group discussion will be out of 100 marks
and shall be s	caled down to 50 marks
Semester End	Examinations (SEE)
SEE paper sha	If be set for 50 questions, each of 01 mark. The pattern of the question paper is MCQ (multiple choice
questions). In	e time allotted for SEE is 01 hour. The student has to secure minimum of 35% of the maximum marks
meant for SEE	
Suggested Les	arning Pasaursos:
Books	מוחוות הבסטוונבט.
16 Dride	er PS Introduction to ergonomics 1995 McGrow Hill INC Now York
TO. BLID	er, n.s. mit outulion to ergonomics, 1995. Milliaw Alli, INC, New York.
	les Direse. Account / incluent prevention techniques, 2001. Taylor and Francis, London.
	reisaivenuy,. Hanu book of human factors and ergonomics,1997. John Wileyand Sons, INC, New York.
19. Krom	ier, K.H.E. Ergonomics, 2001. Prentice nail, Upper saddle river, NJ 07458.

20. William D. McArdle. Exercise physiology, 1991. LEA and FEBIGER, London.

Web links and Video Lectures (e-Resources):

- http://www.osha.gov/SLTC/ergonomics
- http://www.ergonomicsusa.com
- http://www.masterytech.com/productpage.php?product_id=clmimsdt
- http://www.samaras-assoc.com/ergonomics.htm
- http://www.ergonomics4schools.com/lzone/anthropometry.htm
- http://www.brianmac.co.uk/biomechanics.htm
- http://www.d.umn.edu/~mlevy/CLASSES/.../esat3300_intro.htm
- http://www.websters-dictionary-online.org/wo/work+physiology.html
- http://www.ufv.ca/faculty/kpe/.../physiology%203r/workphysio3.ppt
- http://www.chiroweb.com/archives/18/07/06.html
- http://www.brianmac.co.uk/oxdebit.htm
- http://www.osha.gov/SLTC/heatstress
- http://www.plantstress.com/Articles/heat_i/heat_i.htm
- http://www.hoptechno.com/book41.htm
- http://www.tuolumnejpa.org/Cold%20Stress.pdf
- http://www.ginmiller.com/gmf06/articles/.../RPE_talk_test.html
- http://www.cdc.gov/physicalactivity/everyone/.../exertion.html
- http://www.laxpart161.com/en/noise_effects_LAX.pdf
- http://www.asha.org/public/hearing/disorders/noise.htm
- http://www.managementparadise.com/forums/...php/t-17709.html

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Quizzes
- Assignments
- Seminars
- Mini Projects

Semester 04

Ability Enhancement Course IV

SPREAD SHEETS FOR ENGINEERS					
Course	Code	21AG483	CIE Marks	50	
Teachin	g Hours/Week (L:T:P: S)	0:0:2:0	SEE Marks	50	
Credits		1	Exam Hours	03	
Course	objectives:				
	• To create different plots and	d charts			
	To compute different functi	ons, conditional functions and ma	ake regression analysis		
	To carryout iterative solution	ons for roots, multiple roots, optin	nization and non-linear regre	ession analysis	
	To carryout matrix operatio	ns			
	To Understand VBA and UD	F			
	To understand VBA subrout	ines and Macros			
	To carryout numerical integ	ration and solving differential equ	uations using different metho	ods	
SI.NO		Experiments			
1	Charting: Create an XY scatter gra	aph, XY chart with two Y-Axes, add	d error bars to your plot, crea	ate a	
	combination chart				
2	Functions: Computing Sum, Ave	rage, Count, Max and Min, Co	omputing Weighted Averag	e, Trigonometric	
	Functions, Exponential Functions,	Using The CONVERT Function to	Convert Units		
3	Conditional Functions: Logical Exp	pressions, Boolean Functions, IF Fu	unction, Creating a Quadration	Equation Solver,	
	Table VLOOKUP Function, AND, O	R and XOR functions.			
4	Regression Analysis: Trendline, Sl	ope and Intercept, Interpolation a	and Forecast, The LINEST Fun	ction, Multilinear	
	Regression, Polynomial Fit Function	ons, Residuals Plot, Slope and Tan	gent, Analysis ToolPack.		
5	Iterative Solutions Using Excel: U	sing Goal Seek in Excel, Using The	Solver To Find Roots, Findin	g Multiple Roots,	
	Optimization Using The Solver, M	inimization Analysis, NonLinear R	egression Analysis.		
6	Matrix Operations Using Excel: Adding Two Matrices, Multiplying a Matrix by a Scalar, Multiplying Two Matrices,				
	Transposing a Matrix, Inverting a Matrix and Solving System of Linear Equations.				
7	7 VBA User-Defined Functions (UDF): The Visual Basic Editor (VBE), The IF Structure, The Select Case Structure, The				
	For Next Structure, The Do Loop	Structure, Declaring Variables a	nd Data Types, An Array Fu	inction The Excel	
0	VBA Subroutings of Magrees Base	cture.	inding Depts by Dispetien 11		
ŏ	Adding a Control and Croating Lis	or Forms	inding Roots by Bisection, U	sing Arrays,	
	Adding a control and creating os	Domonstration Eversis	05		
9		Demonstration Exercisi	=5		
	Numerical Integration Using Exce	el: The Rectangle Rule, The Trapez	oid Rule, The Simpson's Rule	e, Creating a	
10	User-Defined Function Using the	Simpson's Rule.			
11					
	Differential Equations: Euler's Me	ethod. Modified Euler's Method. 1	The Runge Kutta Method. So	lving a Second	
12	Order Differential Equation		,	0	
Course	outcomes (Course Skill Set):				
At the e	end of the course the student will b	e able to:			
	• To create different plots and	d charts			
	• To compute different functi	ons, conditional functions and ma	ake regression analysis		
	• To carryout iterative solution	ons for roots, multiple roots, optin	nization and non-linear regre	ession analysis	
	• To carryout matrix operatio	ns			
	• To Understand VBA and UD	F			
	• To understand VBA subrout	ines and Macros			
	• To carryout numerical integ	ration and solving differential equ	uations using different metho	ods	

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each course. The student has to secure not less than 35% (18 Marks out of 50) in the semester-end examination(SEE).

Continuous Internal Evaluation (CIE):

CIE marks for the practical course is **50 Marks**.

The split-up of CIE marks for record/ journal and test are in the ratio **60:40**.

- Each experiment to be evaluated for conduction with observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments designed by the faculty who is handling the laboratory session and is made known to students at the beginning of the practical session.
- Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks.
- Total marks scored by the students are scaled downed to 30 marks (60% of maximum marks).
- Weightage to be given for neatness and submission of record/write-up on time.
- Department shall conduct 02 tests for 100 marks, the first test shall be conducted after the 8th week of the semester and the second test shall be conducted after the 14th week of the semester.
- In each test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce.
- The suitable rubrics can be designed to evaluate each student's performance and learning ability. Rubrics suggested in Annexure-II of Regulation book
- The average of 02 tests is scaled down to **20 marks** (40% of the maximum marks).

The Sum of scaled-down marks scored in the report write-up/journal and average marks of two tests is the total CIE marks scored by the student.

Semester End Evaluation (SEE):

SEE marks for the practical course is 50 Marks.

SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the University All laboratory experiments are to be included for practical examination.

(Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. **OR** based on the course requirement evaluation rubrics shall be decided jointly by examiners. Students can pick one question (experiment) from the questions lot prepared by the internal /external examiners jointly.

Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners.

General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Vivavoce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners)

Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero. The duration of SEE is 03 hours

Rubrics suggested in Annexure-II of Regulation book

Suggested Learning Resources:

- McFedries Paul Microsoft Excel 2019 Formulas And Functions Microsoft Press, U.S, 2019 Edition
- E. Joseph BillO, Excel@ for Scientists and Engineers Numerical Methods, WILEY-INTERSCIENCE A John Wiley & Sons, Inc., Publication, 2007
- https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471461296.app4