B. E.(Common to all branches)

Choice Based Credit System (CBCS) and Outcome-Based Education (OBE) SEMESTER - III

TRANSFORM CALCULUS, FOURIER SERIES AND NUMERICAL TECHNIQUES				
Course Code	21MAT 31	CIE Marks	50	
Teaching Hours/Week (L:T:P:S)) 2:2:0:0	SEE Marks	50	
Total Hours of Pedagogy	40	Total Marks	100	
Credits	03	Exam Hours	03	
techniques 21MAT 31 is	the course Transform Calculus, Fo			
transform techniques		luations by using La	aplace	
 Learn to use the Fourier series to represent periodical physical phenomena in 				
engineering analysis.				
e e .	ts to study Fourier Transforms and	concepts of infinit	e Fourier Sine	
	as and to learn the method of solvi	-		
transform method.		ng unierenee equat		
 To develop proficiency in solving ordinary and partial differential equations arising in 				
engineering applications, using numerical methods				
	Module-1: Laplace Transform	n		
Definition and Laplace trans	forms of elementary functions		Problems on	
-	, $t^n f(t)$, $\frac{f(t)}{t}$. Laplace transform	-		
Laplace transforms (without of differential equations. (8 Hou	efinition and problems, Convolu Proof) problems.Laplace tran (rs) neous first-order differential equat	sforms of deriva		
	Chalk and talk method / PowerPo	int Presentation		
Module-2: Fourier Series				
Introduction toinfinite series, convergence and divergence. Periodic functions, Dirichlet's condition.				
Fourier series of periodic functions with period 2π and arbitrary period. Half range Fourier series.				
Practical harmonic analysis.(81	Hours)			
Self-study: Convergence of serie	s by D'Alembert's Ratio test and, C	auchy'sroot test.		
(RBT Levels: L1, L2 and L3)	-			
Teaching-Learning Process	Chalk and talk method / PowerPo	int Presentation		
Module-3: I	nfinite Fourier Transforms and	Z-Transforms		
Inverse Fourier cosine and sine to Difference equations, z-transform	rm-definition, Standard z-transfo nd applications to solve difference	rms, Damping and	shifting rules,	
(RBT Levels: L1, L2 and L3)	a value meorems, problems.			
	Chalk and talk method / PowerPo	int Presentation		
ggg				

Module-4: Numerical Solution of Partial Differential Equations

Classifications of second-order partial differential equations, finite difference approximations to derivatives, Solution of Laplace's equationusing standard five-point formula. Solution of heat equation by Schmidt explicit formula and Crank- Nicholson method, Solution of the Wave equation. Problems.

(8 Hours)

Self Study: Solution of Poisson equations using standard five-point formula.

(RBT Levels: L1, L2 and L3)

(;;;;;;;;			
Teaching-Learning Process	Chalk and talk method / PowerPoint Presentation		
Module-5: Numerical Solution of Second-Order ODEs and Calculus of Variations			
Second-order differential equations - Runge-Kutta method and Milne's predictor and corrector			
method. (No derivations of fo	ormulae).		
Calculus of Variations:Functionals, Euler's equation, Problems on extremals of functional.			
Geodesics on a plane, Variational problems. (8 Hours)			
Self Study: Hanging chain problem			
(RBT Levels: L1, L2 and L3)			
Course outcomes: After successfully completing the course, the students will beable :			
To solve ordinary differential equations using Laplace transform.			
	er series to study the behaviour of periodic functions and their ommunications, digital signal processing and field theory.		
	rms to analyze problems involving continuous-time signals and to niques to solve difference equations		
 To solve mathematical partial differential equat 	models represented by initial or boundary value problems involving ions		
Determine the extrema	ls of functionals using calculus of variations and solve problems		

Determine the extremals of functionals using calculus of variations and solve problems arising in dynamics of rigid bodies and vibrational analysis.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 20 Marks (duration 01 hour)
- 2. First test at the end of 5^{th} week of the semester
- 3. Second test at the end of the 10th week of the semester
- 4. Third test at the end of the 15^{th} week of the semester

Two assignments each of 10 Marks

- 5. First assignment at the end of 4^{th} week of the semester
- 6. Second assignment at the end of 9^{th} week of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for **20 Marks** (duration 01 hours)

7. At the end of the 13^{th} week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be **scaled down to 50 marks**

(to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)

- The question paper will be set for 100 marks and marks scored will be proportionally scaled down to 50 marks
- The question paper will have ten questions. Each question is set for 20 marks.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- The students have to answer 5 full questions, selecting one full question from each module

Suggested Learning Resources:

Text Books:

- 1. **B.S.Grewal**: "HigherEngineeringMathematics", Khannapublishers, 44thEd. 2018
- 2. **E.Kreyszig**: "AdvancedEngineeringMathematics", JohnWiley&Sons, 10thEd.(Reprint), 2016.

Reference Books

- 1. **V.Ramana:**"HigherEngineeringMathematics"McGraw-HillEducation,11thEd.
- 2. SrimantaPal&SubodhC.Bhunia:"EngineeringMathematics"OxfordUniversityPress,3rdReprint, 2016.
- 3. **N.P Bali and Manish Goyal**: "A textbook of Engineering Mathematics" Laxmi Publications, Latest edition.
- 4. **C. Ray Wylie, Louis C. Barrett:** "Advanced Engineering Mathematics" McGraw Hill Book Co.Newyork, Latested.
- 5. **Gupta C.B, Sing S.R and Mukesh Kumar:** "Engineering Mathematic for Semester I and II", Mc-Graw Hill Education(India) Pvt. Ltd2015.
- 6. H.K.DassandEr.RajnishVerma: "HigherEngineeringMathematics" S.ChandPublication (2014).
- 7. JamesStewart:"Calculus"Cengagepublications,7thedition,4thReprint2019.

Web links and Video Lectures (e-Resources):

- <u>http://.ac.in/courses.php?disciplineID=111</u>
- <u>http://www.class-central.com/subject/math(MOOCs)</u>
- <u>http://academicearth.org/</u>
- <u>http://www.bookstreet.in</u>.
- VTU e-ShikshanaProgram
- VTU EDUSATProgram

Activity-Based Learning (Suggested Activities in Class)/ Practical Based learning

- Quizzes
- Assignments
- Seminars