Model Question Paper-II with effect from 2022 (CBCS Scheme)

USN \square

Second Semester B.E Degree Examination
 Mathematics-II for Mechanical Engineering stream-BMATM201

TIME: 03 Hours
Note: 1. Answer any FIVE full questions, choosing at least ONE question from each module.
2. VTU Formula Hand Book is permitted.
3. M: Marks, L: Bloom's level, C: Course outcomes.

Module -1			M	L	C
Q. 01	a	Evaluate $\int_{-\mathbf{1}}^{1} \int_{0}^{z} \int_{-x-z}^{x+z}(x+y+z) d y d x d z$	7	L3	C01
	b	Evaluate $\int_{0}^{4 a} \int_{x}^{2 \sqrt{a x}} x^{2} d y d x$ by changing the order of integration.	7	L3	C01
	c	Show that $\gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$	6	L2	C01
OR					
Q. 02	a	Evaluate $\int_{1}^{2} \int_{3}^{4}\left(x y+e^{y}\right) d y d x$	7	L3	C01
	b	Find by double integration area between the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$	7	L2	C01
	c	Write a modern mathematical tool program to find the volume of the tetrahedron bounded by the planes $x=0, y=0$ and $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$	6	L3	C05
Module-2					
Q. 03	a	Find the angle between the surfaces $x^{2}+y^{2}-z^{2}=4$ and $z=x^{2}+y^{2}-13$ at $(2,1,2)$	7	L2	CO2
	b	If $\vec{F}=\nabla\left(x y^{3} z^{2}\right)$ find $\operatorname{div} \vec{F}$ and $\operatorname{curl} \vec{F}$ at the point (1, $\left.-1,1\right)$	7	L2	C02
	c	Define a solenoidal vector. Find the value of a for which $\vec{F}=(x+3 y) \hat{\imath}+(y-2 z) \hat{\jmath}+(x+a z) \hat{k}$ is solenoidal.	6	L2	C02
OR					
Q. 04	a	Using Green's theorem, evaluate $\int_{C}\left(x y+y^{2}\right) d x+x^{2} d y$, where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$.	7	L3	C02

	b	Apply Stoke's theorem to evaluate $\int_{c} \vec{F} \cdot \overrightarrow{d r}$, where $\vec{F}=y^{2} \hat{\imath}+x^{2} \hat{\jmath}-(x+z) \hat{k}$ and C is the boundary of the triangle with the vertices $(0,0,0),(1,0,0),(1,1,0)$.					7	L3	CO2
	c	Write the modern mathematical tool program to find the divergence of the vector field $\vec{F}=x^{2} y z \hat{\imath}+y^{2} z x \hat{\jmath}+z^{2} x y \hat{k}$					6	L3	C05
Module-3									
Q. 05	a	Form the PDE by eliminating the arbitrary function from $f\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0$,					7	L2	C03
	b	Solve $\frac{\partial^{2} z}{\partial x^{2}}=x y$, subject to the conditions that $\frac{\partial z}{\partial x}=\log (1+y)$ when $x=1$ and $z=0$ when $x=0$					7	L3	C03
	c	Derive one-dimensional wave equation.					6	L2	C03
OR									
Q. 06	a	Form the PDE by eliminating the arbitrary constants a and b from$2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$					7	L2	C03
	b	Solve $\frac{\partial^{2} z}{\partial y^{2}}=z$, given that $y=0, z=e^{x}, \frac{\partial z}{\partial y}=e^{-x}$					7	L3	C03
	c	Solve $x^{2}\left(y^{2}-z^{2}\right) p+y^{2}\left(z^{2}-x^{2}\right) q=z^{2}\left(x^{2}-y^{2}\right)$ using Lagrange's multipliers.					6	L3	C03
Module-4									
Q. 07	a	Find an approximate value of the root of the equation $x e^{x}-2=0$, in the interval using the Regula-Falsi method.					7	L3	C04
	b	Using Newton's divided d following table:	$\begin{gathered} \text { fere } \\ \hline 0 \\ \hline-4 \end{gathered}$	$\begin{aligned} & \text { efo } \\ & \hline 2 \\ & \hline 2 \end{aligned}$	$\begin{gathered} \text { mula } \\ \hline 3 \\ \hline 14 \end{gathered}$	valuate $f(4)$ from the 6 158	7	L3	C04
	c	Evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ by taking 7 ordinates using the Trapezoidal rule.					6	L3	C04
OR									
Q. 08	a	Using the Newton-Raphson method, find the real root of the equation $x \sin x+\cos x=0$, which is nearer to $x=\pi$, correct to three decimal places.					7	L3	C04

Bloom's Taxonomy Levels	Remembering (knowledge): L_{1}	Understanding (Comprehension): L_{2}	Applying (Application): L_{3}	
	Higher-order thinking skills			
	Analyzing (Analysis): L_{4}	Valuating (Evaluation): L_{5}	Creating (Synthesis): L_{6}	

Model Question Paper-I with effect from 2022 (CBCS Scheme)

USN \square

Second Semester B.E Degree Examination Mathematics-II for Mechanical Engineering stream-BMATM201

Note: 1. Answer any FIVE full questions, choosing at least ONE question from each module.
2. VTU Formula Hand Book is permitted.
3. M: Marks, L: Bloom's level, C: Course outcomes.

Module -1			M	L	C
Q. 01	a	Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}}\left(x^{2}+y^{2}\right) d y d x$	7	L3	C01
	b	Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} x y z d z d y d x$	7	L3	C01
	c	Prove that $\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \theta} d \theta \times \int_{0}^{\frac{\pi}{2}} \frac{d \theta}{\sqrt{\sin \theta}}=\pi$	6	L2	C01
OR					
Q. 02	a	Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{1}{y e^{y}} d y d x$ by changing the order of integration	7	L3	C01
	b	By changing into polar coordinates, evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}}\left(x^{2}+y^{2}\right) d x d y$	7	L3	C01
	c	Using modern mathematical tools write a program to evaluate $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a}\left(x^{2}+y^{2}+z^{2}\right) d z d y d x$	6	L3	C05
Module-2					
Q. 03	a	If $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ and $\|\vec{r}\|=r$, find $\operatorname{grad}\left(\operatorname{div} \frac{\vec{r}}{r}\right)$	7	L2	C02
	b	Find the constants a, b and c such that the vector $\vec{F}=(x+y+a z) \hat{\imath}+(x+c y+2 z) \hat{\jmath}+(b x+2 y-z) \hat{\jmath}+(x+c y+2 z) \hat{k}$ is irrotational.	7	L2	C02
	c	Find the directional derivative of $x^{2} y z^{3}$ at $(1,1,1)$ in the direction of $\hat{\imath}+\hat{\jmath}+2 \hat{k}$	6	L2	CO2
OR					
Q. 04	a	Find the work done by a force $\vec{f}=\left(2 y-x^{2}\right) \hat{\imath}+6 y z \hat{\jmath}-8 x z^{2} \hat{k}$ from the point $(0,0,0)$ to the point $(1,1,1)$ along the straight-line joining these points.	7	L2	C02

	b	Evaluate $\int_{c}\left[x y d x+x y^{2} d y\right]$ by Green's theorem where c is the square in the $x y$ plane with vertices $(1,0),(-1,0),(0,1)$ and $(0,-1)$					7	L3	C02
	c	Using modern mat $\int_{c}[(y-\sin x) d x+$ by the lines $y=0$,	natical $x d y]$, w $\frac{\pi}{2}$ and y	write c is th $\frac{x}{\pi}$, Using	progra ane tr en's th	evaluate enclosed m.	6	L3	C05
Module-3									
Q. 05	a	Form the partial differential equation by eliminating the arbitrary function f from $z=y^{2}+2 f\left(\frac{1}{x}+\log y\right)$					7	L2	C03
	b	Solve $\frac{\partial^{2} z}{\partial x^{2}}=a^{2} z$ given that $x=0, z=0$ and $\frac{\partial z}{\partial x}=a \sin y$					7	L3	C03
	c	Solve $(x+2 z) p+(4 z x-y) q=\left(2 x^{2}+y\right)$					6	L3	C03
OR									
Q. 06	a	Form the partial differential equation by eliminating the arbitrary constants a and b from $(x-a)^{2}+(y-b)^{2}+z^{2}=c^{2}$					7	L2	C03
	b	Solve $\frac{\partial^{2} z}{\partial x \partial y}=\sin x \sin y$ for which $\frac{\partial z}{\partial y}=-2 \sin y$, when $x=0$ and $z=0$ if y is an odd multiple of $\frac{\pi}{2}$.					7	L3	C03
	c	Derive one-dimensional heat equation in the standard form as $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$					6	L2	C03
Module-4									
Q. 07	a	Compute the real root of the equation $x \log _{10} x-1.2=0$ lies between 2 and 3 by the Regula-Falsi method. Carry out four approximations.					7	L2	CO4
	b	The area A of a circle Find the area corres appropriate interpol	$\begin{gathered} \frac{\text { respond }}{85} \\ \hline 5674 \\ \hline \begin{array}{l} \text { nding } \mathrm{t} \\ \text { n formul } \end{array} \end{gathered}$	the dia 90 6362	$\begin{gathered} \frac{\operatorname{er}(D)}{95} \\ \frac{7088}{\text { r } 105} \end{gathered}$	$\begin{gathered} \hline \frac{\text { ven below: }}{100} \\ \hline 7854 \\ \hline \text { using the } \end{gathered}$	7	L3	CO4
	c	Evaluate $\int_{0}^{\frac{\pi}{2}} \sqrt{\operatorname{Sin} \theta} d \theta$ by taking 7 ordinates using Simpson's $\left(\frac{1}{3}\right)^{r d}$ rule.					6	L3	C04
OR									
Q. 08	a	Find the real root of the equation $x e^{x}=2$ correct to three decimal places using the Newton-Raphson method.					7	L3	C04

$\begin{array}{l}\text { Bloom's } \\ \text { Taxonomy } \\ \text { Levels }\end{array}$	Lower-order thinking skills			
	Remembering			

(Comprehension): \mathrm{L}_{2}\end{array} \quad $$
\begin{array}{c}\text { Applying } \\
\text { (Application): } \mathrm{L}_{3}\end{array}
$$\right]\)

