Model Question Paper-II with effect from 2022 (CBCS Scheme)

USN

Second Semester B.E Degree Examination

Mathematics-II for Mechanical Engineering stream-BMATM201

TIME: 03 Hours

Max. Marks: 100

- Note: 1. Answer any **FIVE** full questions, choosing at least **ONE** question from each **module**.
 - 2. VTU Formula Hand Book is permitted.
 - 3. M: Marks, L: Bloom's level, C: Course outcomes.

	Μ	L	С					
Q.01	а	Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{-x-z}^{x+z} (x+y+z) dy dx dz$	7	L3	CO1			
	b	Evaluate $\int_0^{4a} \int_x^{2\sqrt{ax}} x^2 dy dx$ by changing the order of integration.	7	L3	C01			
	С	6	L2	C01				
		OR						
Q.02 a Evaluate $\int_1^2 \int_3^4 (xy + e^y) dy dx$					CO1			
	b	Find by double integration area between the parabolas $y^2 = 4ax$ and	7	L2	C01			
	$x^2 = 4ay$							
	С	Write a modern mathematical tool program to find the volume of the	6	L3	CO5			
		tetrahedron bounded by the planes $x = 0$, $y = 0$ and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$						
Module-2								
Q. 03	а	Find the angle between the surfaces $x^2 + y^2 - z^2 = 4$ and $z = x^2 + y^2 - 13$ at (2,1,2)	7	L2	CO2			
	b	If $\vec{F} = \nabla(xy^3z^2)$ find <i>div</i> \vec{F} and <i>curl</i> \vec{F} at the point $(1, -1, 1)$	7	L2	CO2			
	С	Define a solenoidal vector. Find the value of <i>a</i> for which	6	L2	CO2			
		$\vec{F} = (x+3y)\hat{\imath} + (y-2z)\hat{\jmath} + (x+az)\hat{k}$ is solenoidal.						
	OR							
Q.04	а	Using Green's theorem, evaluate $\int_C (xy + y^2) dx + x^2 dy$, where C is	7	L3	CO2			
		the closed curve of the region bounded by $y = x$ and $y = x^2$.						

	b	Apply Stoke's theorem to evaluate $\int_{c} \vec{F} \cdot \vec{dr}$, where $\vec{F} = y^{2}\hat{i} + x^{2}\hat{j} - (x + z)\hat{k}$ and C is the boundary of the triangle	7	L3	CO2
	6	With the vertices $(0, 0, 0)$, $(1, 0, 0)$, $(1, 1, 0)$.	6	12	<u> </u>
	L	while the model in mathematical tool program to find the divergence	U	Ц3	05
		of the vector field $F = x^2yzt + y^2zxJ + z^2xyk$			
0.05	а	Module-3 Form the PDF by eliminating the arbitrary function from	7	L2	CO3
Q. 05	u	$f(x + y + z x^2 + y^2 + z^2) = 0$		112	205
	1.	j(x + y + 2, x + y + 2) = 0,	7	1.2	602
	D	Solve $\frac{\partial^2 z}{\partial x^2} = xy$, subject to the conditions that		L3	03
		$\frac{\partial z}{\partial x} = \log(1+y)$ when $x = 1$ and $z = 0$ when $x = 0$			
	С	Derive one-dimensional wave equation.	6	L2	CO3
		OR			
Q. 06	а	Form the PDE by eliminating the arbitrary constants <i>a</i> and <i>b</i> from	7	L2	CO3
		$2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$			
	b	Solve $\frac{\partial^2 z}{\partial y^2} = z$, given that $y = 0, z = e^x, \frac{\partial z}{\partial y} = e^{-x}$	7	L3	CO3
	С	Solve $x^2(y^2 - z^2)p + y^2(z^2 - x^2)q = z^2(x^2 - y^2)$ using Lagrange's	6	L3	CO3
		multipliers.			
		Module-4			
Q. 07	а	Find an approximate value of the root of the equation $xe^x - 2 = 0$, in	7	L3	CO4
		the interval using the Regula-Falsi method.			
	b	Using Newton's divided difference formula, evaluate $f(4)$ from the	7	L3	CO4
		following table:			
		f(r) -4 2 14 158			
	С	Evaluate $\int_0^1 \frac{1}{1+x^2} dx$ by taking 7 ordinates using the Trapezoidal rule.	6	L3	CO4
0.00		OR CIT	-	10	604
Q. 08	а	Using the Newton-Raphson method, find the real root of the equation	'	L3	LU4
		$x\sin x + \cos x = 0$, which is nearer to $x = \pi$, correct to three decimal			
		places.			

	b	Using Newton's forward interpolation formula, find y at $x = 5$	7	L3	CO4
		x 4 6 8 10			
		y 1 3 8 16			
	С	Evaluate $\int_0^5 \frac{1}{4x+5} dx$ by using Simpson's $\left(\frac{1}{3}\right)^{rd}$ rule by taking 7 ordinates.	6	L3	CO4
		Hence find the value of <i>log</i> 5.			
		Module-5			
Q. 09	а	Find by Taylor's series method the value of y at $x = 0.1$ to 5 places of	7	L2	CO4
		decimals from $\frac{dy}{dx} = xy^2 - 1$, $y(0) = 1$.			
	b	Using the Runge-Kutta method of fourth order, find $y(0.2)$ given that	7	L3	CO4
		$\frac{dy}{dx} = \frac{y-x}{y+x}, y(0) = 1$, taking $h = 0.2$			
	С	Given that $\frac{dy}{dx} = x - y^2$ and the data $y(0) = 0, y(0.2) = 0.02, y(0.4) =$	6	L3	CO4
		0.0795, $y(0.6) = 0.1762$. Compute y at $x = 0.8$ by applying Milne's			
		method.			
		OR			
Q. 10	а	Using the modified Euler's method, find y(0.1) given that $\frac{dy}{dx} = x^2 + y$	7	L3	CO4
		and $y(0) = 1$ take step $h = 0.05$ and perform two modifications in each			
		stage.			
	b	Using the Runge-Kutta method of fourth order find $y(0.1)$ given that	7	L3	CO4
		$\frac{dy}{dx} = x^2 + y, \ y(0) = -1.$			
	С	Using modern mathematical tools write a code to find $y(0.1)$, given	6	L3	CO5
		$\frac{dy}{dx} = x - y, y(0) = 1$ by Taylor's Series.			

	Lower-order thinking skills									
Bloom's	Remembering Understanding		Applying							
Taxonomy	(knowledge): L ₁	(Comprehension): L ₂	(Application): L ₃							
Levels		Higher-order thinking skills								
	Analyzing (Analysis): L ₄	Valuating (Evaluation): L ₅	Creating (Synthesis): L ₆							

Model Question Paper-I with effect from 2022 (CBCS Scheme)

USN

Second Semester B.E Degree Examination

Mathematics-II for Mechanical Engineering stream-BMATM201

TIME: 03 Hours

Max. Marks: 100

- Note: 1. Answer any **FIVE** full questions, choosing at least **ONE** question from each **module**.
 - 2. VTU Formula Hand Book is permitted.
 - 3. M: Marks, L: Bloom's level, C: Course outcomes.

	Module -1								
Q.01	а	Evaluate $\int_0^1 \int_x^{\sqrt{x}} (x^2 + y^2) dy dx$	7	L3	CO1				
	b	Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} xyzdz dy dx$	7	L3	CO1				
	С	Prove that $\int_0^{\frac{\pi}{2}} \sqrt{\sin \theta} d\theta \times \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{\sin \theta}} = \pi$	6	L2	C01				
		OR		1					
Q.02 a Evaluate $\int_0^\infty \int_x^\infty \frac{1}{ye^y} dy dx$ by changing the order of integration					C01				
	b	By changing into polar coordinates, evaluate $\int_{0}^{a\sqrt{a^{2}-x^{2}}} \int_{0}^{x^{2}+y^{2}} dx dy$	7	L3	C01				
	С	Using modern mathematical tools write a program to evaluate $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} (x^{2} + y^{2} + z^{2}) dz dy dx$	6	L3	CO5				
	Module-2								
Q. 03	а	If $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ and $ \vec{r} = r$, find $grad\left(div \frac{\vec{r}}{r}\right)$	7	L2	CO2				
	b	Find the constants <i>a</i> , <i>b</i> and <i>c</i> such that the vector $\vec{F} = (x + y + az)\hat{i} + (x + cy + 2z)\hat{j} + (bx + 2y - z)\hat{j} + (x + cy + 2z)\hat{k}$ is irrotational.	7	L2	CO2				
	С	Find the directional derivative of x^2yz^3 at (1,1,1) in the direction of $\hat{i} + \hat{j} + 2\hat{k}$	6	L2	CO2				
		OR							
Q.04	а	Find the work done by a force $\vec{f} = (2y - x^2)\hat{i} + 6yz\hat{j} - 8xz^2\hat{k}$ from the point (0, 0, 0) to the point (1, 1, 1) along the straight–line joining these points.	7	L2	CO2				

	b	Evaluate $\int_c [xydx + xy^2dy]$ by Green's theorem where <i>c</i> is the square in the <i>xy</i> plane with vertices (1,0), (-1,0), (0,1) and (0,-1)	7	L3	CO2
	C	Using modern mathematical tools write a program to evaluate $\int_c [(y - \sin x)dx + \cos x dy]$, where <i>c</i> is the plane triangle enclosed by the lines $y = 0$, $x = \frac{\pi}{2}$ and $y = \frac{2x}{\pi}$, Using Green's theorem.	6	L3	CO5
		Module-3			
Q. 05	а	Form the partial differential equation by eliminating the arbitrary function <i>f</i> from $z = y^2 + 2f\left(\frac{1}{x} + \log y\right)$	7	L2	CO3
	b	Solve $\frac{\partial^2 z}{\partial x^2} = a^2 z$ given that $x = 0, z = 0$ and $\frac{\partial z}{\partial x} = a \sin y$	7	L3	CO3
	С	Solve $(x + 2z)p + (4zx - y)q = (2x^2 + y)$	6	L3	CO3
		OR			
Q. 06	а	Form the partial differential equation by eliminating the arbitrary constants <i>a</i> and <i>b</i> from $(x - a)^2 + (y - b)^2 + z^2 = c^2$	7	L2	CO3
	b	Solve $\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$ for which $\frac{\partial z}{\partial y} = -2 \sin y$, when $x = 0$ and $z = 0$ if y is an odd multiple of $\frac{\pi}{2}$.	7	L3	CO3
	С	Derive one-dimensional heat equation in the standard form as $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$	6	L2	CO3
Q. 07	a	Compute the real root of the equation $x \log_{10} x - 1.2 = 0$ lies between 2 and 3 by the Regula-Falsi method. Carry out four approximations.	7	L2	CO4
	b	The area A of a circle corresponds to the diameter (D) is given below:D80859095100A50265674636270887854Find the area corresponding to the diameter 105 by using the appropriate interpolation formula	7	L3	CO4
	c	Evaluate $\int_{0}^{\frac{\pi}{2}} \sqrt{Sin\theta} d\theta$ by taking 7 ordinates using Simpson's $\left(\frac{1}{3}\right)^{rd}$ rule.	6	L3	CO4
	•	OR			
Q. 08	а	Find the real root of the equation $xe^x = 2$ correct to three decimal places using the Newton-Raphson method.	7	L3	C04

	b	From the data given in the following table, find the number of students who obtained marks between 40 and 45:					7	L2	CO4		
		Marks	30 - 40	40 - 50	50 - 60	60 - 70 70 - 80					
		No. of studer	nts 31	42	51	35		31			
	С	Compute the v	the value of y when $x = 3$ using Lagrange's interpolation			6	L3	CO4			
		x	-2	-1	1	2					
		у	-7	2	0	0 11		11			
				Modu	ule-5						
Q. 09	а	Solve the differential equation $\frac{dy}{dx} = x^2 + y^2$ given $y(0) = 1$ to find the value of $y(0.1)$ by using the Taylor series method taking the terms up to 4 th order							7	L3	CO4
	b	Apply the Runge-Kutta method of fourth order, to find an approximate value of <i>y</i> at $x = 0.1$, given that $\frac{dy}{dx} = 3e^x + 2y$ with $y(0) = 0$ and $h = 0.1$.							7	L3	CO4
	C	Given $y' = x^2 + \frac{y}{2}$ and $y(1) = 2$, $y(1.1) = 2.2156$, $y(1.2) = 2.4649$, y(1.3) = 2.7514, find $y(1.4)$ using Milne's predictor and corrector formulae						6	L3	CO4	
				0	R					1	
Q. 10	а	Use modified Euler's method to find $y(0.2)$ given $\frac{dy}{dx} = 3x + \frac{y}{2}, y(0) = 1$ taking $h = 0.1$ (perform two iterations at each step)						7	L3	CO4	
	b	Use the Runge-Kutta method of 4 th order to solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with $y(0) = 1$ at $x = 0.2$							7	L3	CO4
	С	Using modern mathematical tools write a program to find <i>y</i> when $x = 0.8$, given $\frac{dy}{dx} = x - y^2$ $y(0) = 0, y(0.2) = 0.2000$, $y(0.4) = 0.0795, y(0.6) = 0.1762$, Using Milne's predictor-corrector method.						6	L3	C05	

Lower-order thinking skills									
Bloom's	Remembering	Understanding	Applying						
Taxonomy	(knowledge): L ₁	(Comprehension): L ₂	(Application): L ₃						
Levels		Higher-order thinking skills							
	Analyzing (Analysis): L ₄	Valuating (Evaluation): L ₅	Creating (Synthesis): L ₆						